Terraform MCP Server

Terraform MCP Server

Enables management of Terraform infrastructure as code through 25 comprehensive tools for operations including plan/apply/destroy, state management, workspace management, and configuration file editing.

Category
访问服务器

README

Terraform MCP Server

Model Context Protocol (MCP) server for Terraform Infrastructure as Code operations. Provides 25 comprehensive tools for managing Terraform configurations, state, workspaces, and executing infrastructure operations.

Features

Core Operations (6 tools)

  • tf_version - Get Terraform version information
  • tf_init - Initialize Terraform working directory (with optional provider upgrades)
  • tf_validate - Validate Terraform configuration syntax
  • tf_plan - Create execution plan showing proposed changes
  • tf_apply - Apply Terraform changes to infrastructure
  • tf_destroy - Destroy Terraform-managed infrastructure

Output Management (1 tool)

  • tf_output - Get Terraform output values (JSON or plain text)

State Management (6 tools)

  • tf_state_list - List all resources in Terraform state
  • tf_state_show - Show detailed information for a specific resource
  • tf_state_rm - Remove a resource from Terraform state
  • tf_state_mv - Move/rename a resource in Terraform state
  • tf_import - Import existing infrastructure into Terraform state
  • tf_refresh - Refresh Terraform state from real infrastructure

Code Formatting (1 tool)

  • tf_fmt - Format Terraform configuration files (check or modify)

Workspace Management (4 tools)

  • tf_workspace_list - List all Terraform workspaces
  • tf_workspace_select - Switch to a different workspace
  • tf_workspace_new - Create a new workspace
  • tf_workspace_delete - Delete a workspace

Provider Management (1 tool)

  • tf_providers - List Terraform providers in use

Advanced Operations (3 tools)

  • tf_graph - Generate resource dependency graph in DOT format
  • tf_taint - Mark a resource for recreation on next apply
  • tf_untaint - Remove taint marking from a resource

Plan Management (1 tool)

  • tf_show_plan - Show details of a saved execution plan file

File Operations (3 tools)

  • tf_list_files - List Terraform files in a directory (.tf, .tfvars, .tfstate)
  • tf_read_file - Read contents of a Terraform configuration file
  • tf_write_file - Write content to a Terraform configuration file

Installation

npm install
npm run build

Configuration

The server uses an optional environment variable to set the default working directory:

export TERRAFORM_WORKING_DIR="/path/to/your/terraform/projects"

If not set, the server will use the current working directory.

Usage with Claude Desktop

Add to your Claude Desktop configuration file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%\Claude\claude_desktop_config.json

{
  "mcpServers": {
    "terraform": {
      "command": "node",
      "args": ["/path/to/mcp-terraform/dist/index.js"],
      "env": {
        "TERRAFORM_WORKING_DIR": "/path/to/terraform/projects"
      }
    }
  }
}

Development

Run in development mode with hot reload:

npm run dev

Requirements

  • Terraform CLI must be installed and available in your PATH
  • Appropriate cloud provider credentials configured (AWS, Azure, GCP, etc.)
  • Terraform working directory with configuration files

Example Use Cases

  1. Infrastructure Planning: Review changes before applying them
  2. State Management: Import existing resources, move resources between modules
  3. Workspace Management: Manage multiple environments (dev, staging, prod)
  4. Code Quality: Format Terraform files consistently
  5. Troubleshooting: Inspect state, visualize resource dependencies
  6. Selective Operations: Apply changes to specific resources using targets
  7. Configuration Management: Read and modify Terraform configuration files

Tool Parameters

Common Parameters

  • dir (optional): Working directory for Terraform operations. Defaults to TERRAFORM_WORKING_DIR or current directory
  • auto_approve (optional): Skip interactive approval for apply/destroy operations
  • target (optional): Limit operations to specific resources (e.g., aws_instance.example)
  • var (optional): Pass variables to Terraform commands (object with key-value pairs)

Plan Operations

{
  "dir": "/path/to/project",
  "out": "plan.tfplan",
  "target": "aws_instance.web",
  "var": {
    "region": "us-west-2",
    "instance_type": "t3.micro"
  }
}

State Operations

{
  "dir": "/path/to/project",
  "address": "aws_instance.example",
  "source": "aws_instance.old_name",
  "destination": "aws_instance.new_name"
}

Security Considerations

  • The server executes Terraform commands with full permissions
  • Ensure proper access controls on the working directory
  • Be cautious with auto_approve flag on apply/destroy operations
  • Store sensitive variables in Terraform variable files or environment variables, not in plain text
  • Review plans carefully before applying changes to production infrastructure

Output Formats

  • Most commands return plain text output from Terraform CLI
  • Use json: true with tf_output for structured JSON responses
  • State operations return formatted resource information
  • Graph operations return DOT format for visualization tools

Visualization

The tf_graph tool generates dependency graphs in DOT format. Use tools like Graphviz to visualize:

# Save graph output to file
terraform graph > graph.dot

# Generate PNG image
dot -Tpng graph.dot -o graph.png

Error Handling

The server captures both stdout and stderr from Terraform commands. Failed operations return error messages with exit codes for troubleshooting.

API Reference

For detailed Terraform CLI documentation, see: https://developer.hashicorp.com/terraform/cli

License

MIT

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选