Terraform MCP Server
Enables management of Terraform infrastructure as code through 25 comprehensive tools for operations including plan/apply/destroy, state management, workspace management, and configuration file editing.
README
Terraform MCP Server
Model Context Protocol (MCP) server for Terraform Infrastructure as Code operations. Provides 25 comprehensive tools for managing Terraform configurations, state, workspaces, and executing infrastructure operations.
Features
Core Operations (6 tools)
tf_version- Get Terraform version informationtf_init- Initialize Terraform working directory (with optional provider upgrades)tf_validate- Validate Terraform configuration syntaxtf_plan- Create execution plan showing proposed changestf_apply- Apply Terraform changes to infrastructuretf_destroy- Destroy Terraform-managed infrastructure
Output Management (1 tool)
tf_output- Get Terraform output values (JSON or plain text)
State Management (6 tools)
tf_state_list- List all resources in Terraform statetf_state_show- Show detailed information for a specific resourcetf_state_rm- Remove a resource from Terraform statetf_state_mv- Move/rename a resource in Terraform statetf_import- Import existing infrastructure into Terraform statetf_refresh- Refresh Terraform state from real infrastructure
Code Formatting (1 tool)
tf_fmt- Format Terraform configuration files (check or modify)
Workspace Management (4 tools)
tf_workspace_list- List all Terraform workspacestf_workspace_select- Switch to a different workspacetf_workspace_new- Create a new workspacetf_workspace_delete- Delete a workspace
Provider Management (1 tool)
tf_providers- List Terraform providers in use
Advanced Operations (3 tools)
tf_graph- Generate resource dependency graph in DOT formattf_taint- Mark a resource for recreation on next applytf_untaint- Remove taint marking from a resource
Plan Management (1 tool)
tf_show_plan- Show details of a saved execution plan file
File Operations (3 tools)
tf_list_files- List Terraform files in a directory (.tf, .tfvars, .tfstate)tf_read_file- Read contents of a Terraform configuration filetf_write_file- Write content to a Terraform configuration file
Installation
npm install
npm run build
Configuration
The server uses an optional environment variable to set the default working directory:
export TERRAFORM_WORKING_DIR="/path/to/your/terraform/projects"
If not set, the server will use the current working directory.
Usage with Claude Desktop
Add to your Claude Desktop configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"terraform": {
"command": "node",
"args": ["/path/to/mcp-terraform/dist/index.js"],
"env": {
"TERRAFORM_WORKING_DIR": "/path/to/terraform/projects"
}
}
}
}
Development
Run in development mode with hot reload:
npm run dev
Requirements
- Terraform CLI must be installed and available in your PATH
- Appropriate cloud provider credentials configured (AWS, Azure, GCP, etc.)
- Terraform working directory with configuration files
Example Use Cases
- Infrastructure Planning: Review changes before applying them
- State Management: Import existing resources, move resources between modules
- Workspace Management: Manage multiple environments (dev, staging, prod)
- Code Quality: Format Terraform files consistently
- Troubleshooting: Inspect state, visualize resource dependencies
- Selective Operations: Apply changes to specific resources using targets
- Configuration Management: Read and modify Terraform configuration files
Tool Parameters
Common Parameters
dir(optional): Working directory for Terraform operations. Defaults toTERRAFORM_WORKING_DIRor current directoryauto_approve(optional): Skip interactive approval for apply/destroy operationstarget(optional): Limit operations to specific resources (e.g.,aws_instance.example)var(optional): Pass variables to Terraform commands (object with key-value pairs)
Plan Operations
{
"dir": "/path/to/project",
"out": "plan.tfplan",
"target": "aws_instance.web",
"var": {
"region": "us-west-2",
"instance_type": "t3.micro"
}
}
State Operations
{
"dir": "/path/to/project",
"address": "aws_instance.example",
"source": "aws_instance.old_name",
"destination": "aws_instance.new_name"
}
Security Considerations
- The server executes Terraform commands with full permissions
- Ensure proper access controls on the working directory
- Be cautious with
auto_approveflag on apply/destroy operations - Store sensitive variables in Terraform variable files or environment variables, not in plain text
- Review plans carefully before applying changes to production infrastructure
Output Formats
- Most commands return plain text output from Terraform CLI
- Use
json: truewithtf_outputfor structured JSON responses - State operations return formatted resource information
- Graph operations return DOT format for visualization tools
Visualization
The tf_graph tool generates dependency graphs in DOT format. Use tools like Graphviz to visualize:
# Save graph output to file
terraform graph > graph.dot
# Generate PNG image
dot -Tpng graph.dot -o graph.png
Error Handling
The server captures both stdout and stderr from Terraform commands. Failed operations return error messages with exit codes for troubleshooting.
API Reference
For detailed Terraform CLI documentation, see: https://developer.hashicorp.com/terraform/cli
License
MIT
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。