Tesla MCP Server

Tesla MCP Server

An MCP server that connects to the Tesla Fleet API, allowing users to control vehicles and retrieve real-time status updates through Claude and other AI assistants. It supports functions such as waking up vehicles, viewing detailed vehicle information, and debugging via both stdio and HTTP/SSE transports.

Category
访问服务器

README

Tesla MCP Server

A Model Context Protocol (MCP) server for the Tesla Fleet API. Control your Tesla and get vehicle data (location, wake up, list cars) from any MCP-capable AI assistant or agent.

Features

  • list_cars — List your vehicles and get IDs for use with other tools
  • get_vehicle_location — Current GPS location and Google Maps link (parking monitor style)
  • wake_up — Wake a vehicle from sleep
  • refresh_vehicles / debug_vehicles — Refresh list and debug info
  • HTTP/SSE mode — Host as a web service; each user brings their own Tesla Developer credentials (no server-side secrets required)

Security

  • We never see or store your Tesla password. Sign-in is via Tesla’s OAuth in your browser.
  • HTTP mode: Credentials and tokens are stored in memory per session only; not written to disk.
  • No sensitive data in logs — We do not log tokens, full session IDs, or API response bodies.
  • Before you commit: Run ./check-secrets.sh to catch accidental hardcoded secrets.

See SECURITY.md for details and how to report issues.


Quick Start (Hosted — recommended)

Use the server without running anything locally. Each user connects with their own Tesla account.

1. Add the server in your MCP client

  • Server URL: https://tesla-mcp.onrender.com/sse
    (Or use your own deployed URL; see Deploy below.)

2. First time: connect your Tesla

  1. Use a tool (e.g. get_setup_url) — the agent will return a link.
  2. Open the link and enter your Tesla Developer Client ID and Client Secret.
  3. Log in with your Tesla account when redirected.
  4. On the success page, copy the connection URL (e.g. https://.../sse?token=...). Use that URL as your MCP server URL in your client so reconnects keep you logged in. Keep it private.
  5. If you don’t add that URL, your client may get a new session on each reconnect and ask you to set up again.

Getting Tesla Developer credentials: Create an app at developer.tesla.com. Set the redirect URI to https://YOUR_SERVER_URL/auth/callback (e.g. https://tesla-mcp.onrender.com/auth/callback).

Render: Set Instance count to 1 (Dashboard → your service → Settings) so all requests hit the same server and your session isn’t lost.


Quick Start (Local)

Option A: HTTP server (multi-user, browser auth)

git clone https://github.com/Sara3/Tesla-MCP.git
cd Tesla-MCP
npm install
npm run build
npm run start:http
  • Open http://localhost:3000 and follow the setup link to add your Tesla Developer credentials and sign in.
  • In your MCP client, use Server URL: http://localhost:3000/sse (for production use HTTPS and set BASE_URL).

Option B: Stdio (single user, .env only)

For a single user with credentials in .env:

# .env
TESLA_CLIENT_ID=...
TESLA_CLIENT_SECRET=...
TESLA_REFRESH_TOKEN=...
npm run build
npm start

Configure your MCP client to run the server command (e.g. node run-mcp.js). Get a refresh token with npm run get-token.


Environment variables

Variable Required Description
HTTP mode
BASE_URL Yes (production) Public HTTPS URL of your server (e.g. https://tesla-mcp.onrender.com)
TESLA_CLIENT_ID Optional If set with TESLA_CLIENT_SECRET, users go straight to the Tesla login page (no setup page)
TESLA_CLIENT_SECRET Optional Server Tesla app secret; use with TESLA_CLIENT_ID
PORT No Port (default 3000)
HOST No Bind address (default 0.0.0.0)
Stdio mode
TESLA_CLIENT_ID Yes From developer.tesla.com
TESLA_CLIENT_SECRET Yes From developer portal
TESLA_REFRESH_TOKEN Yes From npm run get-token

Never commit .env or keys/. Run ./check-secrets.sh before pushing.


Tools (MCP)

Tool Description
get_setup_url Get the URL to set up Tesla Developer credentials
get_auth_url Get the URL to connect your Tesla account (after setup)
list_vehicles List vehicles and their IDs (use with other tools)
get_vehicle_location Current location (lat/long + Google Maps link); takes vehicle_id
wake_up Wake a vehicle; takes vehicle_id
refresh_vehicles Refresh the vehicle list from the API
debug_vehicles Debug info (ids, vins, state)

For vehicle_id you can use id, vehicle_id, or vin from list_cars.


Deploy

Render

  1. Connect your GitHub repo at render.com → New → Web Service.
  2. Build command: npm install && npm run build
    Start command: npm run start:http
  3. Add env var: BASE_URL = https://YOUR-SERVICE.onrender.com
  4. Users set their Tesla app redirect URI to https://YOUR-SERVICE.onrender.com/auth/callback.

Docker

docker build -t tesla-mcp .
docker run -p 3000:3000 -e BASE_URL=https://your-domain.com tesla-mcp

Production: Use HTTPS and set BASE_URL to your public URL. On Render, set Instance count to 1 so sessions persist. See SECURITY.md.


Troubleshooting

Session keeps resetting / setup keeps asking

  1. Confirm credentials were saved — After submitting the setup form, you should see a green "Credentials saved successfully" message. If you see that, your Client ID and Secret were saved for that session.
  2. If setup keeps appearing, double-check in your Tesla Developer App:
    • Client ID and Client Secret are correct (copy from the app page).
    • Redirect URI is set exactly to your server’s callback URL, for example:
      • Render: https://tesla-mcp.onrender.com/auth/callback
      • Local: http://localhost:3000/auth/callback Any typo or extra slash will cause Tesla to reject the auth and the session will not persist.

“Authenticating your account” spinner never stops

Tesla should redirect you back to this app; if the spinner never finishes, the redirect may be failing. Check that your Tesla app’s Redirect URI is exactly https://tesla-mcp.onrender.com/auth/callback (or your BASE_URL + /auth/callback). Try in a normal browser window with extensions disabled so nothing blocks the redirect.

Session “doesn’t save” in incognito / have to log in again

Sessions are stored on the server, not in the browser. Incognito doesn’t keep cookies, but we don’t use cookies for your session—we use the connection URL with the token. After you log in, you must copy the connection URL (e.g. https://.../sse?token=...) from the success page and use that URL as your MCP server URL. If you use the plain /sse URL without the token, each new connection gets a new session and you’ll be asked to set up or log in again.

Tesla login page shows errors or won’t load (CSP, “inline script”, fingerprint, etc.)

Those errors come from Tesla’s login site (auth.tesla.com), not from this server. Browsers or extensions (e.g. ad blockers, Cursor, or other injectors) can block scripts on Tesla’s page and break login.

  • Try in a private/incognito window with extensions disabled.
  • Try another browser or a clean profile without extensions.
  • Temporarily allow auth.tesla.com in your ad/tracking blocker so Tesla’s scripts (and reCAPTCHA) can load.

Scripts

Command Description
npm run build Build TypeScript
npm run start Run stdio MCP server
npm run start:http Run HTTP/SSE server
npm run dev:http Run HTTP server (dev, with ts-node)
npm run get-token Get Tesla refresh token (local browser flow)
npm run test-api Test Tesla API connection
npm run register Register app with Tesla (uses ngrok)
./check-secrets.sh Check for accidental secrets in code

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选