Tesseract PDF MCP Server

Tesseract PDF MCP Server

Provides OCR capabilities to extract text from PDF documents using Tesseract, with support for multiple languages including English and Simplified Chinese.

Category
访问服务器

README

Tesseract PDF MCP Server

A Model Context Protocol (MCP) server that provides OCR capabilities for PDF documents using Tesseract OCR. This server allows AI assistants to extract text from PDF files, supporting multiple languages including English and Simplified Chinese out of the box.

Features

  • PDF to Text Conversion: Extract text from PDF documents using OCR technology
  • Multi-language Support: Process documents in multiple languages (English and Simplified Chinese by default)
  • Dockerized Solution: Easy deployment with Docker
  • MCP Integration: Seamlessly integrates with AI assistants that support the Model Context Protocol

Prerequisites

  • Docker installed on your system

Build Instructions

Build the Docker image with the following command:

docker build -t tesseract-pdf-mcp .

Running the Server

Run the MCP server with the following command:

docker run -it --rm \
  -v /path/to/your/pdfs:/pdfs \
  tesseract-pdf-mcp

Important Notes:

  • The -v /path/to/your/pdfs:/pdfs option mounts a volume from your host system to the Docker container, allowing the server to access PDF files.
  • Replace /path/to/your/pdfs with the actual path to the directory containing your PDF files.
  • The server will be accessible via standard input/output (stdio) as specified in the MCP protocol.

Usage

The server provides a tool called convert_pdf that can be used to extract text from PDF files.

Input

The convert_pdf tool accepts the following JSON input:

{
  "file_path": "/pdfs/document.pdf",
  "language": "eng"
}

Parameters:

  • file_path (required): Path to the PDF file to process. This should be the path inside the container (e.g., /pdfs/document.pdf).
  • language (optional): Language for OCR processing. Default is "eng" (English).
    • Available languages by default: "eng" (English), "chi_sim" (Simplified Chinese)

Output

The tool returns a JSON response with the following structure:

{
  "status": "success",
  "output_path": "/pdfs/document.txt"
}

On success:

  • status: Will be "success"
  • output_path: The absolute path to the generated text file

On error:

  • status: Will be "error"
  • message: Error description
  • output_path: Will be null

Example Usage

When connected to an AI assistant that supports MCP:

  1. The assistant can use the convert_pdf tool to extract text from a PDF file
  2. The text file will be created in the same directory as the PDF file
  3. The assistant can then access the text file to analyze its contents

Connecting to AI Tools

To connect this MCP server to AI tools that support the Model Context Protocol, you'll need to configure the tool with the appropriate settings.

Configuration Example

Add the following configuration to your AI tool's settings:

{
  "mcpServers": {
    "tesseract-pdf-mcp": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "-v",
        "/path/to/your/pdfs:/pdfs",
        "tesseract-pdf-mcp"
      ],
      "disabled": false,
      "autoApprove": []
    }
  }
}

Make sure to replace /path/to/your/pdfs with the actual path to your PDF files directory.

Usage with AI Tools

Once connected:

  1. The AI tool will have access to the convert_pdf tool provided by this MCP server
  2. You can ask the AI to extract text from PDF documents
  3. The AI will use the MCP server to process the PDFs and access the resulting text

Adding More Languages

The server comes with English (eng) and Simplified Chinese (chi_sim) language support by default. To add more languages:

  1. Modify the Dockerfile by adding additional language packs to the apt-get install command:
RUN apt-get update && apt-get install -y --no-install-recommends \
    tesseract-ocr \
    tesseract-ocr-eng \
    tesseract-ocr-chi-sim \
    tesseract-ocr-fra \    # Add French
    tesseract-ocr-deu \    # Add German
    tesseract-ocr-spa \    # Add Spanish
    poppler-utils \
    && apt-get clean \
    && rm -rf /var/lib/apt/lists/*
  1. Rebuild the Docker image:
docker build -t tesseract-pdf-mcp .

Available Language Codes

Some common language codes for Tesseract OCR:

  • eng: English
  • chi_sim: Simplified Chinese
  • chi_tra: Traditional Chinese
  • fra: French
  • deu: German
  • spa: Spanish
  • ita: Italian
  • jpn: Japanese
  • kor: Korean
  • rus: Russian

For a complete list of available language packs, refer to the Tesseract documentation.

Debugging Inside the Container

If you need to debug or test the PDF conversion logic directly inside the container, follow these steps:

Starting an Interactive Shell

Launch an interactive shell session in the container with the following command:

docker run --rm -it -v /path/to/your/pdfs:/data tesseract-pdf-mcp /bin/bash

This command:

  • Creates a container from the tesseract-pdf-mcp image
  • Mounts your local PDF directory to /data inside the container
  • Overrides the default command to start a bash shell
  • Removes the container automatically when you exit (--rm)

Working Inside the Container

Once inside the container's shell, you can:

  • Navigate the filesystem using standard Linux commands (cd, ls, etc.)
  • Access your mounted PDFs in the /data directory
  • Run Python scripts or start an interactive Python session

Testing the Conversion Function

You can test the PDF to text conversion directly using Python's interactive shell:

# Start Python interactive shell
python3
# Import the conversion function
from ocr.converter import pdf_to_text

# Process a PDF file (replace with your actual filename)
output_path = pdf_to_text('/data/my_document.pdf', lang='eng')

# Verify the result
print(f"Conversion successful. Output saved to: {output_path}")

# Exit Python shell
exit()

The converted text file will be saved in the same directory as your PDF file (in the /data directory), making it accessible from your host machine as well.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选