Testmo MCP Server
Enables AI assistants to interact with Testmo test management platform for creating, reading, updating, and deleting test cases, managing folders, and organizing test runs through natural language.
README
Testmo MCP Server
A Model Context Protocol (MCP) server that provides seamless integration with Testmo test management platform. Built with FastMCP, this server enables AI assistants to interact directly with your Testmo instance for test case management.
Features
- 📋 Test Case Management - Create, read, update, and delete test cases
- 📁 Folder Organization - Create and manage folders to organize test cases
- 🔍 Project Discovery - List projects, templates, and milestones
- ✅ Step-by-Step Tests - Create detailed test cases with steps and expected results
- 🏃 Test Run Support - List and manage test runs
- 🔧 Debug Tools - Built-in API debugging capabilities
Prerequisites
- Python 3.10+
- A Testmo account with API access
- API token from your Testmo instance
Installation
1. Clone the Repository
git clone https://github.com/filipljoljic/Testmo-MCP.git
cd Testmo-MCP
2. Create Virtual Environment
python3 -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
3. Install Dependencies
pip install -r requirements.txt
4. Configure Environment Variables
Set your Testmo credentials as environment variables:
export TESTMO_BASE_URL="https://your-instance.testmo.net"
export TESTMO_TOKEN="your_api_token_here"
Getting your API token:
- Log into your Testmo instance
- Go to Settings → API
- Generate a new API token
- Copy the token and use it in the environment variable
Usage
Running the MCP Server
python3 testmoMCP.py
The server will start and be ready to accept MCP connections from compatible AI assistants.
Integrating with Claude Desktop
Add the following to your Claude Desktop configuration (claude_desktop_config.json):
{
"mcpServers": {
"testmo": {
"command": "python3",
"args": ["/path/to/Testmo-MCP/testmoMCP.py"],
"env": {
"TESTMO_BASE_URL": "https://your-instance.testmo.net",
"TESTMO_TOKEN": "your_api_token_here"
}
}
}
}
Integrating with Cursor
Add to your Cursor MCP settings:
{
"mcpServers": {
"testmo": {
"command": "python3",
"args": ["/path/to/Testmo-MCP/testmoMCP.py"],
"env": {
"TESTMO_BASE_URL": "https://your-instance.testmo.net",
"TESTMO_TOKEN": "your_api_token_here"
}
}
}
}
Available Tools
Project Management
| Tool | Description |
|---|---|
list_projects |
List all projects to find project IDs |
get_project_templates |
Get available templates for a project |
get_project_folders |
List folders within a project |
get_milestones |
Get milestones for a project |
Test Case Operations
| Tool | Description |
|---|---|
create_test_case |
Create a new test case with steps |
create_test_case_with_steps_json |
Create test case with JSON-formatted steps |
create_test_case_raw |
Create test case with raw JSON payload |
get_test_case |
Get details of a specific test case |
list_test_cases |
List test cases in a project |
update_test_case |
Update an existing test case |
delete_test_cases |
Delete one or more test cases |
Folder Management
| Tool | Description |
|---|---|
create_folder |
Create a new folder for organizing test cases |
Test Run Operations
| Tool | Description |
|---|---|
list_test_runs |
List test runs in a project |
create_manual_test_run |
Create a manual test run (note: limited API support) |
Debugging
| Tool | Description |
|---|---|
debug_api_test |
Test API connectivity and view configuration |
Examples
Creating a Test Case with Steps
Using natural language with an AI assistant:
"Create a test case called 'User Login Flow' with steps to navigate to login, enter credentials, and verify successful login"
The assistant will use the create_test_case tool with:
project_id: 1
title: "User Login Flow"
description: "Verify user can successfully log in to the application"
steps: "1. Navigate to login page | Expected: Login page loads
2. Enter valid credentials | Expected: Fields accept input
3. Click Login button | Expected: User is logged in and redirected to dashboard"
Listing Projects
"Show me all available Testmo projects"
The assistant will call list_projects and return:
Found Projects:
ID: 1 | Name: Web Application | Active: True
ID: 2 | Name: Mobile App | Active: True
Creating Organized Test Cases
"Create a folder called 'Authentication' in project 1, then create a test case inside it"
# First creates folder
create_folder(project_id=1, name="Authentication")
# Then creates test case in that folder
create_test_case(project_id=1, folder_id=<new_folder_id>, title="Login Test", ...)
API Reference
This MCP server integrates with the Testmo REST API v1. Key endpoints used:
GET /api/v1/projects- List projectsPOST /api/v1/projects/{id}/cases- Create test casesGET /api/v1/projects/{id}/cases- List test casesPATCH /api/v1/projects/{id}/cases- Update test casesDELETE /api/v1/projects/{id}/cases- Delete test casesGET /api/v1/projects/{id}/folders- List foldersPOST /api/v1/projects/{id}/folders- Create folders
Priority Values
When creating test cases, use these priority IDs:
| ID | Priority |
|---|---|
| 1 | Low |
| 2 | Medium |
| 3 | High |
| 4 | Critical |
Time Estimates
Estimates are specified in minutes:
| Value | Duration |
|---|---|
| 15 | 15 minutes |
| 60 | 1 hour |
| 480 | 8 hours (1 day) |
Troubleshooting
API Connection Issues
- Verify your
TESTMO_BASE_URLis correct (should be likehttps://your-instance.testmo.net) - Check that your API token is valid and has appropriate permissions
- Use the
debug_api_testtool to diagnose connectivity issues
Test Case Creation Fails
- Ensure you're using a valid
project_id(uselist_projectsfirst) - For step-based test cases, get the correct
template_idusingget_project_templates - Verify folder exists if specifying
folder_id
Steps Not Showing
Make sure to:
- Use the "Case (steps)" template - get its ID via
get_project_templates - Format steps correctly:
"1. Step description | Expected: expected result"
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。