Tesy 56 MCP Server
Provides AI agents and LLMs access to the Tesy 56 API through standardized MCP tools for seamless integration and interaction with Tesy 56 endpoints.
README
tesy 56 MCP Server
This is an MCP (Model Context Protocol) server that provides access to the tesy 56 API. It enables AI agents and LLMs to interact with tesy 56 through standardized tools.
Features
- 🔧 MCP Protocol: Built on the Model Context Protocol for seamless AI integration
- 🌐 Full API Access: Provides tools for interacting with tesy 56 endpoints
- 🐳 Docker Support: Easy deployment with Docker and Docker Compose
- ⚡ Async Operations: Built with FastMCP for efficient async handling
API Documentation
- tesy 56 Website: https://petstore.swagger.io/
- API Documentation:
Available Tools
This server provides the following tools:
example_tool: Placeholder tool (to be implemented)
Note: Replace example_tool with actual tesy 56 API tools based on the documentation.
Installation
Using Docker (Recommended)
-
Clone this repository:
git clone https://github.com/Traia-IO/tesy-56-mcp-server.git cd tesy-56-mcp-server -
Run with Docker:
./run_local_docker.sh
Using Docker Compose
- Create a
.envfile with your configuration:
PORT=8000
2. Start the server:
```bash
docker-compose up
Manual Installation
-
Install dependencies using
uv:uv pip install -e . -
Run the server:
uv run python -m server
## Usage
### Health Check
Test if the server is running:
```bash
python mcp_health_check.py
Using with CrewAI
from traia_iatp.mcp.traia_mcp_adapter import create_mcp_adapter
# Connect to the MCP server
with create_mcp_adapter(
url="http://localhost:8000/mcp/"
) as tools:
# Use the tools
for tool in tools:
print(f"Available tool: {tool.name}")
# Example usage
result = await tool.example_tool(query="test")
print(result)
Development
Testing the Server
- Start the server locally
- Run the health check:
python mcp_health_check.py - Test individual tools using the CrewAI adapter
Adding New Tools
To add new tools, edit server.py and:
- Create API client functions for tesy 56 endpoints
- Add
@mcp.tool()decorated functions - Update this README with the new tools
- Update
deployment_params.jsonwith the tool names in the capabilities array
Deployment
Deployment Configuration
The deployment_params.json file contains the deployment configuration for this MCP server:
{
"github_url": "https://github.com/Traia-IO/tesy-56-mcp-server",
"mcp_server": {
"name": "tesy-56-mcp",
"description": "Uih uih uhoui houiho",
"server_type": "streamable-http",
"capabilities": [
// List all implemented tool names here
"example_tool"
]
},
"deployment_method": "cloud_run",
"gcp_project_id": "traia-mcp-servers",
"gcp_region": "us-central1",
"tags": ["tesy 56", "api"],
"ref": "main"
}
Important: Always update the capabilities array when you add or remove tools!
Google Cloud Run
This server is designed to be deployed on Google Cloud Run. The deployment will:
- Build a container from the Dockerfile
- Deploy to Cloud Run with the specified configuration
- Expose the
/mcpendpoint for client connections
Environment Variables
PORT: Server port (default: 8000)STAGE: Environment stage (default: MAINNET, options: MAINNET, TESTNET)LOG_LEVEL: Logging level (default: INFO)
Troubleshooting
- Server not starting: Check Docker logs with
docker logs <container-id> - Connection errors: Ensure the server is running on the expected port3. Tool errors: Check the server logs for detailed error messages
Contributing
- Fork the repository
- Create a feature branch
- Implement new tools or improvements
- Update the README and deployment_params.json
- Submit a pull request
License
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。