Tesy 56 MCP Server

Tesy 56 MCP Server

Provides AI agents and LLMs access to the Tesy 56 API through standardized MCP tools for seamless integration and interaction with Tesy 56 endpoints.

Category
访问服务器

README

tesy 56 MCP Server

This is an MCP (Model Context Protocol) server that provides access to the tesy 56 API. It enables AI agents and LLMs to interact with tesy 56 through standardized tools.

Features

  • 🔧 MCP Protocol: Built on the Model Context Protocol for seamless AI integration
  • 🌐 Full API Access: Provides tools for interacting with tesy 56 endpoints
  • 🐳 Docker Support: Easy deployment with Docker and Docker Compose
  • Async Operations: Built with FastMCP for efficient async handling

API Documentation

Available Tools

This server provides the following tools:

  • example_tool: Placeholder tool (to be implemented)

Note: Replace example_tool with actual tesy 56 API tools based on the documentation.

Installation

Using Docker (Recommended)

  1. Clone this repository:

    git clone https://github.com/Traia-IO/tesy-56-mcp-server.git
    cd tesy-56-mcp-server
    
  2. Run with Docker:

    ./run_local_docker.sh
    

Using Docker Compose

  1. Create a .env file with your configuration:

PORT=8000


2. Start the server:
```bash
docker-compose up

Manual Installation

  1. Install dependencies using uv:

    uv pip install -e .
    
  2. Run the server:

uv run python -m server


## Usage

### Health Check

Test if the server is running:
```bash
python mcp_health_check.py

Using with CrewAI

from traia_iatp.mcp.traia_mcp_adapter import create_mcp_adapter

# Connect to the MCP server
with create_mcp_adapter(
    url="http://localhost:8000/mcp/"
) as tools:
    # Use the tools
    for tool in tools:
        print(f"Available tool: {tool.name}")
        
    # Example usage
    result = await tool.example_tool(query="test")
    print(result)

Development

Testing the Server

  1. Start the server locally
  2. Run the health check: python mcp_health_check.py
  3. Test individual tools using the CrewAI adapter

Adding New Tools

To add new tools, edit server.py and:

  1. Create API client functions for tesy 56 endpoints
  2. Add @mcp.tool() decorated functions
  3. Update this README with the new tools
  4. Update deployment_params.json with the tool names in the capabilities array

Deployment

Deployment Configuration

The deployment_params.json file contains the deployment configuration for this MCP server:

{
  "github_url": "https://github.com/Traia-IO/tesy-56-mcp-server",
  "mcp_server": {
    "name": "tesy-56-mcp",
    "description": "Uih uih uhoui houiho",
    "server_type": "streamable-http",
"capabilities": [
      // List all implemented tool names here
      "example_tool"
    ]
  },
  "deployment_method": "cloud_run",
  "gcp_project_id": "traia-mcp-servers",
  "gcp_region": "us-central1",
  "tags": ["tesy 56", "api"],
  "ref": "main"
}

Important: Always update the capabilities array when you add or remove tools!

Google Cloud Run

This server is designed to be deployed on Google Cloud Run. The deployment will:

  1. Build a container from the Dockerfile
  2. Deploy to Cloud Run with the specified configuration
  3. Expose the /mcp endpoint for client connections

Environment Variables

  • PORT: Server port (default: 8000)
  • STAGE: Environment stage (default: MAINNET, options: MAINNET, TESTNET)
  • LOG_LEVEL: Logging level (default: INFO)

Troubleshooting

  1. Server not starting: Check Docker logs with docker logs <container-id>
  2. Connection errors: Ensure the server is running on the expected port3. Tool errors: Check the server logs for detailed error messages

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Implement new tools or improvements
  4. Update the README and deployment_params.json
  5. Submit a pull request

License

MIT License

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选