Text Classification MCP Server (Model2Vec)

Text Classification MCP Server (Model2Vec)

Enables fast text classification using Model2Vec static embeddings with 10 default categories (technology, business, health, etc.), supports custom category management, batch processing, and provides both local and remote deployment options.

Category
访问服务器

README

Text Classification MCP Server (Model2Vec)

A powerful Model Context Protocol (MCP) server that provides comprehensive text classification tools using fast static embeddings from Model2Vec (Minish Lab).

🛠️ Complete MCP Tools & Resources

This server provides 6 essential tools, 2 resources, and 1 prompt template for text classification:

🏷️ Classification Tools

  • classify_text - Classify single text with confidence scores
  • batch_classify - Classify multiple texts simultaneously

📝 Category Management Tools

  • add_custom_category - Add individual custom categories
  • batch_add_custom_categories - Add multiple categories at once
  • list_categories - View all available categories
  • remove_categories - Remove unwanted categories

📊 Resources

  • categories://list - Access category list programmatically
  • model://info - Get model and system information

💬 Prompt Templates

  • classification_prompt - Ready-to-use classification prompt template

🚀 Key Features

  • Multiple Transports: Supports stdio (local) and HTTP/SSE (remote) transports
  • Fast Classification: Uses efficient static embeddings from Model2Vec
  • 10 Default Categories: Technology, business, health, sports, entertainment, politics, science, education, travel, food
  • Custom Categories: Add your own categories with descriptions
  • Batch Processing: Classify multiple texts at once
  • Resource Endpoints: Access category lists and model information
  • Prompt Templates: Built-in prompts for classification tasks
  • Production Ready: Docker, nginx, systemd support

📋 Installation

Prerequisites

  • Python 3.10+
  • uv package manager (recommended) or pip

Quick Setup

# Install dependencies
pip install -r requirements.txt

# Or with uv
uv sync 

🏃‍♂️ Running the Server

Option 1: Stdio Transport (Local/Traditional)

# Run with stdio (default - for Claude Desktop local config)
python text_classifier_server.py

# Or explicitly
python text_classifier_server.py --stdio

Option 2: HTTP Transport (Remote/Web)

# Run with HTTP transport on localhost:8000
python text_classifier_server.py --http

# Run on custom port
python text_classifier_server.py --http 9000

# Use the convenience script
./start_server.sh http 8000

Option 3: Using the HTTP Runner

# More options with the HTTP runner
python run_http_server.py --transport http --host 127.0.0.1 --port 8000 --debug

🔧 Configuration

For Claude Desktop

Stdio Transport (Local)

Add to ~/Library/Application Support/Claude/claude_desktop_config.json:

{
  "mcpServers": {
    "text-classifier": {
      "command": "python",
      "args": ["path/to/text_classifier_server.py"],
      "env": {}
    }
  }
}

HTTP Transport (Remote)

Add to ~/Library/Application Support/Claude/claude_desktop_config.json:

{
  "mcpServers": {
    "text-classifier-http": {
      "url": "http://localhost:8000/sse",
      "env": {}
    }
  }
}

For VS Code

Add to .vscode/mcp.json:

{
  "servers": {
    "text-classifier": {
      "type": "sse",
      "url": "http://localhost:8000/sse",
      "description": "Text classification server using static embeddings"
    }
  }
}

For Cursor IDE

Similar to Claude Desktop, but check Cursor's MCP documentation for the exact configuration path.

🛠️ Available Tools

classify_text

Classify a single text into predefined categories with confidence scores.

Parameters:

  • text (string): The text to classify
  • top_k (int, optional): Number of top categories to return (default: 3)

Returns: JSON with predictions, confidence scores, and category descriptions

Example:

classify_text("Apple announced new AI features", top_k=3)

batch_classify

Classify multiple texts simultaneously for efficient processing.

Parameters:

  • texts (list): List of texts to classify
  • top_k (int, optional): Number of top categories per text (default: 1)

Returns: JSON with batch classification results

Example:

batch_classify(["Tech news", "Sports update", "Business report"], top_k=2)

add_custom_category

Add a new custom category for classification.

Parameters:

  • category_name (string): Name of the new category
  • description (string): Description to generate the category embedding

Returns: JSON with operation result

Example:

add_custom_category("automotive", "Cars, vehicles, transportation, automotive industry")

batch_add_custom_categories

Add multiple custom categories in a single operation for efficiency.

Parameters:

  • categories_data (list): List of dictionaries with 'name' and 'description' keys

Returns: JSON with batch operation results

Example:

batch_add_custom_categories([
    {"name": "automotive", "description": "Cars, vehicles, transportation"},
    {"name": "music", "description": "Music, songs, artists, albums, concerts"}
])

list_categories

List all available categories and their descriptions.

Parameters: None

Returns: JSON with all categories and their descriptions

remove_categories

Remove one or multiple categories from the classification system.

Parameters:

  • category_names (list): List of category names to remove

Returns: JSON with removal results for each category

Example:

remove_categories(["automotive", "custom_category"])

📚 Available Resources

  • categories://list: Get list of available categories with metadata
  • model://info: Get information about the loaded Model2Vec model and system status

💬 Available Prompts

  • classification_prompt: Template for text classification tasks with context and instructions

Parameters:

  • text (string): The text to classify

Returns: Formatted prompt for classification with available categories listed

🧪 Testing

Test HTTP Server

# Test the HTTP server endpoints
python test_http_client.py

# Check server status
./check_server.sh

# Test with curl
curl http://localhost:8000/sse

Test with MCP Inspector

# For stdio transport
mcp dev text_classifier_server.py

# For HTTP transport (start server first)
# Then connect MCP Inspector to http://localhost:8000/sse

🐳 Docker Deployment

Basic Docker

# Build and run
docker build -t text-classifier-mcp .
docker run -p 8000:8000 text-classifier-mcp

Docker Compose

# Basic deployment
docker-compose up

# With nginx reverse proxy
docker-compose --profile production up

🚀 Production Deployment

Systemd Service

# Copy service file
sudo cp text-classifier-mcp.service /etc/systemd/system/
sudo systemctl daemon-reload
sudo systemctl enable text-classifier-mcp
sudo systemctl start text-classifier-mcp

Nginx Reverse Proxy

The included nginx.conf provides:

  • HTTP/HTTPS termination
  • Proper SSE headers
  • Load balancing support
  • SSL configuration template

🌐 Transport Comparison

Feature Stdio Transport HTTP Transport
Use Case Local integration Remote/web access
Performance Fastest Very fast
Setup Simple Requires server
Scalability One client Multiple clients
Network Local only Network accessible
Security Process isolation HTTP-based auth
Debugging MCP Inspector HTTP tools + Inspector

🔍 Troubleshooting

Common Issues

  1. Server won't start

    # Check if port is in use
    lsof -i :8000
    
    # Try different port
    python run_http_server.py --port 9000
    
  2. Claude Desktop connection fails

    # Check server status
    ./check_server.sh
    
    # Verify config file syntax
    cat ~/Library/Application\ Support/Claude/claude_desktop_config.json | python -m json.tool
    
  3. Model download fails

    # Manual model download
    python -c "from model2vec import StaticModel; StaticModel.from_pretrained('minishlab/potion-base-8M')"
    

Debug Mode

# Enable debug logging
python run_http_server.py --debug

# Check logs
tail -f logs/mcp_server.log

📖 Technical Details

  • Model: minishlab/potion-base-8M from Model2Vec
  • Similarity: Cosine similarity between text and category embeddings
  • Performance: ~30MB model, fast inference with static embeddings
  • Protocol: MCP specification 2024-11-05
  • Transports: stdio, HTTP+SSE, Streamable HTTP

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Add tests for new functionality
  4. Submit a pull request

📄 License

MIT License - see LICENSE file for details.

🙏 Acknowledgments

  • Model2Vec by Minish Lab for fast static embeddings
  • Anthropic for the Model Context Protocol specification
  • FastMCP for the excellent Python MCP framework

Need help? Check the troubleshooting section or open an issue in the repository.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选