Text-to-GraphQL MCP Server

Text-to-GraphQL MCP Server

Converts natural language queries into valid GraphQL queries and executes them against GraphQL APIs. Includes schema introspection, query validation, execution with authentication, and query history tracking.

Category
访问服务器

README

Text-to-GraphQL MCP Server

Transform natural language queries into GraphQL queries using an MCP (Model Context Protocol) server that integrates seamlessly with AI assistants like Claude Desktop and Cursor.

Install MCP Server

Claude Demo

🚀 Overview

The Text-to-GraphQL MCP Server converts natural language descriptions into valid GraphQL queries using an AI agent built with LangGraph. It provides a bridge between human language and GraphQL APIs, making database and API interactions more intuitive for developers and non-technical users alike.

✨ Features

  • Natural Language to GraphQL: Convert plain English queries to valid GraphQL
  • Schema Management: Load and introspect GraphQL schemas automatically
  • Query Validation: Validate generated queries against loaded schemas
  • Query Execution: Execute queries against GraphQL endpoints with authentication
  • Query History: Track and manage query history across sessions
  • MCP Protocol: Full compatibility with Claude Desktop, Cursor, and other MCP clients
  • Error Handling: Graceful error handling with detailed debugging information
  • Caching: Built-in caching for schemas and frequently used queries

🛠 Installation

Prerequisites: Install UV (Recommended)

UV is a fast Python package installer and resolver. Install it first:

macOS/Linux:

curl -LsSf https://astral.sh/uv/install.sh | sh

Windows:

powershell -c "irm https://astral.sh/uv/install.ps1 | iex"

Find your UV installation path:

# Find where uv is installed
which uv

# Common locations:
# macOS/Linux: ~/.local/bin/uv
# Windows: %APPDATA%\uv\bin\uv.exe

Important: You'll need the UV path for MCP configuration. The typical path is ~/.local/bin on macOS/Linux, which translates to /Users/yourusername/.local/bin (replace yourusername with your actual username).

Setup for MCP Usage

# Clone the repository
git clone https://github.com/Arize-ai/text-to-graphql-mcp.git
cd text-to-graphql-mcp

# Install dependencies (UV automatically creates virtual environment)
uv sync

# Test the installation
uv run text-to-graphql-mcp --help

Note: The uv run pattern automatically handles virtual environments, making MCP configuration cleaner and more reliable than traditional pip installations.

Alternative Installation Methods

From PyPI (when published):

pip install text-to-graphql-mcp

Development Setup:

# For contributing to the project
uv sync --dev

🏃‍♂️ Quick Start

1. Configure with Cursor (Recommended)

Add to your .cursor/mcp.json:

{
  "text-to-graphql": {
    "command": "uv",
    "args": [
      "--directory",
      "/path/to/text-to-graphql-mcp",
      "run",
      "text-to-graphql-mcp"
    ],
    "env": {
      "PATH": "/path/to/uv/bin:/usr/bin:/bin",
      "OPENAI_API_KEY": "your_openai_api_key_here",
      "GRAPHQL_ENDPOINT": "https://your-graphql-api.com/graphql",
      "GRAPHQL_API_KEY": "your_api_key_here",
      "GRAPHQL_AUTH_TYPE": "bearer"
    }
  }
}

Important Setup Notes:

  • Replace /path/to/text-to-graphql-mcp with the actual path to your cloned repository
  • Replace /path/to/uv/bin with your actual UV installation path (typically /Users/yourusername/.local/bin on macOS)
  • The PATH environment variable is required for MCP clients to find the uv command

2. Configure with Claude Desktop

Add to your Claude Desktop MCP configuration file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%\Claude\claude_desktop_config.json

{
  "mcpServers": {
    "text-to-graphql": {
      "command": "uv",
      "args": [
        "--directory",
        "/path/to/text-to-graphql-mcp",
        "run",
        "text-to-graphql-mcp"
      ],
      "env": {
        "PATH": "/path/to/uv/bin:/usr/bin:/bin",
        "OPENAI_API_KEY": "your_openai_api_key_here",
        "GRAPHQL_ENDPOINT": "https://your-graphql-api.com/graphql",
        "GRAPHQL_API_KEY": "your_api_key_here",
        "GRAPHQL_AUTH_TYPE": "bearer"
      }
    }
  }
}

Setup Instructions:

  1. Find your UV path: Run which uv in terminal (typically /Users/yourusername/.local/bin/uv)
  2. Set the PATH: Use the directory containing uv (e.g., /Users/yourusername/.local/bin)
  3. Replace paths: Update both the --directory argument and PATH environment variable with your actual paths
  4. Add your API keys: Replace the placeholder values with your actual API keys

3. Common UV Path Examples

# Find your UV installation
which uv

# Common paths by OS:
# macOS: /Users/yourusername/.local/bin/uv
# Linux: /home/yourusername/.local/bin/uv  
# Windows: C:\Users\yourusername\AppData\Roaming\uv\bin\uv.exe

# For MCP config, use the directory path:
# macOS: /Users/yourusername/.local/bin
# Linux: /home/yourusername/.local/bin
# Windows: C:\Users\yourusername\AppData\Roaming\uv\bin

4. Alternative: Use Environment Variables

If you prefer using a .env file (useful for local development):

# Required
OPENAI_API_KEY=your_openai_api_key_here
GRAPHQL_ENDPOINT=https://your-graphql-api.com/graphql
GRAPHQL_API_KEY=your_api_key_here

# Optional - Authentication method (bearer|apikey|direct)
GRAPHQL_AUTH_TYPE=bearer

# Optional - Model settings
MODEL_NAME=gpt-4o
MODEL_TEMPERATURE=0

Then use a simplified MCP configuration (still requires PATH):

{
  "text-to-graphql": {
    "command": "uv",
    "args": [
      "--directory",
      "/path/to/text-to-graphql-mcp",
      "run",
      "text-to-graphql-mcp"
    ],
    "env": {
      "PATH": "/path/to/uv/bin:/usr/bin:/bin"
    }
  }
}

5. Run the MCP Server (Optional - for testing)

# Run the server directly for testing
text-to-graphql-mcp

# Or run as a module
python -m text_to_graphql_mcp.mcp_server

🔧 Usage

Available MCP Tools

generate_graphql_query

Convert natural language to GraphQL queries.

Input: "Get all users with their names and emails"
Output: query { users { id name email } }

validate_graphql_query

Validate GraphQL queries against the loaded schema.

execute_graphql_query

Execute GraphQL queries and return formatted results.

get_query_history

Retrieve the history of all queries in the current session.

get_query_examples

Get example queries to understand the system's capabilities.

Example Interactions

Natural Language Input:

"Show me all blog posts from the last week with their authors and comment counts"

Generated GraphQL:

query {
  posts(where: { createdAt: { gte: "2024-06-05T00:00:00Z" } }) {
    id
    title
    content
    createdAt
    author {
      id
      name
      email
    }
    comments {
      id
    }
    _count {
      comments
    }
  }
}

🐳 Deploying with Docker

💡 Key Concept: When using Docker with MCP clients (Claude/Cursor), environment variables are set during container startup (docker run), not in the MCP client configuration. The MCP clients simply connect to the already-running container.

Building the Docker Image

# Clone the repository
git clone https://github.com/Arize-ai/text-to-graphql-mcp.git
cd text-to-graphql-mcp

# Build the Docker image
docker build -t text-to-graphql-mcp .

Running the Container

Method 1: Using Environment Variables Directly

docker run -d \
  --name text-to-graphql-mcp \
  -p 8000:8000 \
  -e OPENAI_API_KEY="your_openai_api_key_here" \
  -e GRAPHQL_ENDPOINT="https://your-graphql-api.com/graphql" \
  -e GRAPHQL_API_KEY="your_api_key_here" \
  -e GRAPHQL_AUTH_TYPE="bearer" \
  -e MODEL_NAME="gpt-4o" \
  text-to-graphql-mcp

Method 2: Using an Environment File

Create a .env file:

OPENAI_API_KEY=your_openai_api_key_here
GRAPHQL_ENDPOINT=https://your-graphql-api.com/graphql
GRAPHQL_API_KEY=your_api_key_here
GRAPHQL_AUTH_TYPE=bearer
MODEL_NAME=gpt-4o
MODEL_TEMPERATURE=0

Run the container:

docker run -d \
  --name text-to-graphql-mcp \
  -p 8000:8000 \
  --env-file .env \
  text-to-graphql-mcp

Method 3: Using Docker Compose

Create a docker-compose.yml file:

version: '3.8'

services:
  text-to-graphql-mcp:
    build: .
    container_name: text-to-graphql-mcp
    ports:
      - "8000:8000"
    environment:
      - OPENAI_API_KEY=${OPENAI_API_KEY}
      - GRAPHQL_ENDPOINT=${GRAPHQL_ENDPOINT}
      - GRAPHQL_API_KEY=${GRAPHQL_API_KEY}
      - GRAPHQL_AUTH_TYPE=${GRAPHQL_AUTH_TYPE:-bearer}
      - MODEL_NAME=${MODEL_NAME:-gpt-4o}
      - MODEL_TEMPERATURE=${MODEL_TEMPERATURE:-0}
      - API_HOST=0.0.0.0  # Important: bind to all interfaces in container
    restart: unless-stopped
    healthcheck:
      test: ["CMD", "curl", "-f", "http://localhost:8000/health"]
      interval: 30s
      timeout: 10s
      retries: 3

Then run:

# Start the service
docker-compose up -d

# View logs
docker-compose logs -f

# Stop the service
docker-compose down

Using Docker with MCP Clients

When running the MCP server in Docker, you need to use docker exec to communicate with the container:

Important: The environment variables (OPENAI_API_KEY, GRAPHQL_ENDPOINT, etc.) must be set when you first run the container using one of the methods above. The MCP client configurations below only connect to an already-running container.

Step 1: First, ensure your container is running with environment variables

# Example: Make sure the container is running with your environment variables
docker run -d \
  --name text-to-graphql-mcp \
  -p 8000:8000 \
  --env-file .env \
  text-to-graphql-mcp

# Verify the container is running
docker ps | grep text-to-graphql-mcp

Step 2: Configure Cursor

Add to .cursor/mcp.json:

{
  "text-to-graphql": {
    "command": "docker",
    "args": [
      "exec",
      "-i",
      "text-to-graphql-mcp",
      "uv",
      "run",
      "python",
      "-m",
      "src.text_to_graphql_mcp.mcp_server"
    ]
  }
}

Step 2: Configure Claude Desktop

Add to your Claude Desktop configuration:

{
  "mcpServers": {
    "text-to-graphql": {
      "command": "docker",
      "args": [
        "exec",
        "-i",
        "text-to-graphql-mcp",
        "uv",
        "run",
        "python",
        "-m",
        "src.text_to_graphql_mcp.mcp_server"
      ]
    }
  }
}

Note: The MCP client configurations don't need environment variables because they're connecting to a container that already has them set. If you restart the container, make sure to include the environment variables again.

🏗 Architecture

The system uses a multi-agent architecture built with LangGraph:

  1. Intent Recognition: Understands what the user wants to accomplish
  2. Schema Management: Loads and manages GraphQL schema information
  3. Query Construction: Builds GraphQL queries from natural language
  4. Query Validation: Ensures queries are valid against the schema
  5. Query Execution: Executes queries against the GraphQL endpoint
  6. Data Visualization: Provides recommendations for visualizing results

⚙️ Configuration

Environment Variables

Variable Description Default
OPENAI_API_KEY OpenAI API key for LLM operations Required
GRAPHQL_ENDPOINT GraphQL API endpoint URL Required
GRAPHQL_API_KEY API key for your GraphQL service Required
GRAPHQL_AUTH_TYPE Authentication method: bearer, apikey, or direct bearer
GRAPHQL_HEADERS Custom headers as JSON (overrides auto-auth) {}
MODEL_NAME OpenAI model to use gpt-4o
MODEL_TEMPERATURE Model temperature for responses 0
API_HOST Server host address 127.0.0.1
API_PORT Server port 8000
RECURSION_LIMIT Max recursion for agent workflow 10

Authentication Types

  • bearer (default): Uses Authorization: Bearer <token> - standard for most GraphQL APIs
  • apikey: Uses X-API-Key: <key> - used by some APIs like Arize
  • direct: Uses Authorization: <token> - direct token without Bearer prefix
  • Custom: Set GRAPHQL_HEADERS to override with any custom authentication format

Common GraphQL API Examples

GitHub GraphQL API:

GRAPHQL_ENDPOINT=https://api.github.com/graphql
GRAPHQL_API_KEY=ghp_your_github_personal_access_token
GRAPHQL_AUTH_TYPE=bearer

Shopify GraphQL API:

GRAPHQL_ENDPOINT=https://your-shop.myshopify.com/admin/api/2023-10/graphql.json
GRAPHQL_API_KEY=your_shopify_access_token
GRAPHQL_AUTH_TYPE=bearer

Arize GraphQL API:

GRAPHQL_ENDPOINT=https://app.arize.com/graphql
GRAPHQL_API_KEY=your_arize_developer_api_key
# Auth type auto-detected for Arize

Hasura:

GRAPHQL_ENDPOINT=https://your-app.hasura.app/v1/graphql
GRAPHQL_HEADERS={"x-hasura-admin-secret": "your_admin_secret"}

🔍 Observability & Agent Development

Want to build better AI agents quickly? Check out Arize Phoenix - an open-source observability platform specifically designed for LLM applications and agents. Phoenix provides:

  • Real-time monitoring of your agent's performance and behavior
  • Trace visualization to understand complex agent workflows
  • Evaluation frameworks for testing and improving agent responses
  • Data quality insights to identify issues with your training data
  • Cost tracking for LLM API usage optimization

Phoenix integrates seamlessly with LangChain and LangGraph (which this project uses) and can help you:

  • Debug agent behavior when queries aren't generated correctly
  • Monitor GraphQL query quality and success rates
  • Track user satisfaction and query complexity
  • Optimize your agent's prompt engineering

Get started with Phoenix:

pip install arize-phoenix
phoenix serve

Visit docs.arize.com/phoenix for comprehensive guides on agent observability and development best practices.

🧪 Development

Setup Development Environment

# Install development dependencies
uv pip install -e ".[dev]"

# Run tests
pytest

# Format code
black .
isort .

# Type checking
mypy src/

Project Structure

text-to-graphql-mcp/
├── src/text_to_graphql_mcp/     # Main package
│   ├── mcp_server.py            # MCP server implementation
│   ├── agent.py                 # LangGraph agent logic
│   ├── config.py                # Configuration management
│   ├── logger.py                # Logging utilities
│   ├── tools/                   # Agent tools
│   └── ...
├── tests/                       # Test suite
├── docs/                        # Documentation
├── pyproject.toml              # Package configuration
└── README.md

🤝 Contributing

We welcome contributions! Please see our contributing guidelines for details.

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

📝 License

This project is licensed under the Elastic License 2.0 (ELv2) - see the LICENSE file for details.

🐛 Troubleshooting

Common Issues

"No module named 'text_to_graphql_mcp'"

  • Ensure you've installed the package: pip install text-to-graphql-mcp

"OpenAI API key not found"

  • Set your OPENAI_API_KEY environment variable
  • Check your .env file configuration

"GraphQL endpoint not reachable"

  • Verify your GRAPHQL_ENDPOINT URL
  • Check network connectivity and authentication

"Schema introspection failed"

  • Ensure the GraphQL endpoint supports introspection
  • Check authentication headers if required

🔗 Links

🙏 Acknowledgments


推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选