
Text to Speech MCP Server
Enables agents to convert text to speech using OpenAI's TTS models with voice selection, delivery instructions, and queue-based audio playback. Supports both blocking and non-blocking modes for flexible audio generation and playback control.
README
🎤 Text to Speech MCP Server
Where your agent finally learns to speak up for itself
Welcome to the Text to Speech (TTS) MCP Server – a sophisticated yet charmingly chaotic text-to-speech MCP server that transforms your boring written words into magnificent audible experiences.
Because who needs human vocal cords when you have Python and some very fancy AI models?
🚀 What Does This Do?
This delightful contraption takes your text and makes it speak through your computer's speakers using OpenAI's cutting-edge TTS models. It's like having a personal narrator, except they never get tired, never ask for coffee breaks, and never judge your terrible programming jokes.
Features That Actually Matter
- Speak MCP Tool: Gives your agent the ability to voice any given text in one of several available voices
- Instructions for Delivery: Provide optional
instructions
to guide delivery, character, pacing, tone, and emotion - Model Selection: OpenAI TTS model can be configured via environment variables (default:
gpt-4o-mini-tts
) - Blocking/Non-Blocking Mode: Speak commands can either return immediately for continued agent operation while sound is playing (default) or return only after the sound finishes for a more controlled workflow
- Queue-Based Audio Playback: Agents can queue up messages to wait patiently in line and be played in sequence
🛠️ Installation & Setup
Prerequisites
- Python 3.10+
- An OpenAI API key (the magic ingredient)
- PortAudio (required for PyAudio to work properly)
- A sense of humor (optional but recommended)
Quick Start
-
Install PortAudio:
# macOS brew install portaudio
# Linux (Debian/Ubuntu) sudo apt-get install portaudio19-dev
# Windows pip install pipwin && pipwin install pyaudio
-
Clone this repository:
git clone <your-repo-url> cd tts-mcp
-
Create a virtual environment (because global installs are for rebels):
python -m venv .venv source .venv/bin/activate # On Windows: .venv\Scripts\activate
-
Install dependencies:
pip install -r requirements.txt
-
Set up your environment variables:
cp env.template .env # Edit .env and add your OpenAI API key
Or set directly:
export OPENAI_API_KEY="your-secret-key-here"
-
Configure MCP in your Cursor settings with the provided
mcp-config.json
. Example:{ "mcpServers": { "tts-server": { "command": "/absolute/path/to/tts-mcp/.venv/bin/python", "args": ["/absolute/path/to/tts-mcp/tts_mcp_server.py"], "cwd": "/absolute/path/to/tts-mcp", "env": { "PYTHONPATH": "/absolute/path/to/tts-mcp" } } } }
Replace paths with your local repo and venv.
-
Start making your computer talk!
🎭 Voice Options
Choose your narrator wisely:
- alloy: Neutral, balanced tone (default)
- ash: warm, expressive; friendly support vibes
- ballad: smooth narrator; long-form storytelling
- coral: bright, upbeat; cheerful promos
- echo: Clear and professional, like a news anchor
- fable: Warm and storytelling, perfect for bedtime code reviews
- onyx: Deep and authoritative, for when your code needs to sound important
- nova: Bright and energetic, like your enthusiasm before debugging
- sage: calm, measured; helpful explainer
- shimmer: Soft and gentle, for when you need to break bad news about production bugs
- verse: dramatic, theatrical; trailer read
🎪 Usage Examples
Basic Usage
# Non-blocking (default) - returns immediately
speak("Hello, world! I'm now audible!")
# Blocking - waits for completion
speak("This message will finish before I return", blocking=True)
# With specific voice
speak("I'm feeling dramatic today!", voice="fable")
# With delivery instructions
speak(
"You're doing great—let's take this one step at a time.",
voice="shimmer",
instructions="Speak in a warm, reassuring and unhurried tone and pace"
)
In Cursor with MCP
Just tell Cursor to use the speak
tool in your conversations.
You can suggest a voice and style instructions for maintaining a consistent character.
⚙️ Configuration
Environment variables:
OPENAI_API_KEY
(required): Your OpenAI API keyTTS_MODEL
(optional): Defaults togpt-4o-mini-tts
. Other options includetts-1
,tts-1-hd
(though "instructions" are not supported on those, as well as some of the voices)LOG_LEVEL
(optional):DEBUG
,INFO
(default),WARNING
,ERROR
🧰 Troubleshooting
- No audio / no default output device:
- Set a system default output device and restart the MCP server.
- macOS: System Settings → Sound → Output.
- PyAudio install issues:
- macOS:
brew install portaudio
thenpip install -r requirements.txt
- Linux (Debian/Ubuntu):
sudo apt-get install portaudio19-dev
thenpip install pyaudio
- Windows:
pip install pipwin && pipwin install pyaudio
- macOS:
- Missing API key:
- Ensure
.env
containsOPENAI_API_KEY=...
or export it in your shell.
- Ensure
- High latency or choppy audio:
- Close other audio apps; verify system output device; keep
blocking=False
if you need responsiveness.
- Close other audio apps; verify system output device; keep
- Logs:
- Logs stream to stderr and to
tts_mcp_server.log
. Tail with:tail -f tts_mcp_server.log
- Logs stream to stderr and to
🙏 Acknowledgments
- Cursor for writing 95% of the code here
- Coffee, for making everything else possible
Remember: With great text-to-speech power comes great responsibility. Use your new vocal abilities wisely, and try not to annoy your coworkers too much.
Pro tip: If your computer starts talking back to you without being prompted, it might be time to take a break. Or update your Python version. Probably the latter.
This project is licensed under the BSD 3-Clause License. See the LICENSE file for details.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。