think-mcp

think-mcp

Provides structured thinking tools including mental models, design patterns, debugging approaches, decision frameworks, and multi-persona reasoning to enhance AI assistant problem-solving capabilities.

Category
访问服务器

README

think-mcp

Structured thinking tools for AI assistants. Provides mental models, debugging approaches, decision frameworks, and more via the Model Context Protocol.

Quick Start

Installation

npm install -g think-mcp

Claude Desktop Configuration

Add to ~/Library/Application Support/Claude/claude_desktop_config.json (macOS) or %APPDATA%\Claude\claude_desktop_config.json (Windows):

{
  "mcpServers": {
    "think-mcp": {
      "command": "npx",
      "args": ["think-mcp"]
    }
  }
}

Tools

Tool Description Use When
trace Step-by-step thought tracing Breaking down complex problems
model Mental models (first principles, pareto, etc.) Applying structured thinking frameworks
pattern Software design patterns Architectural decisions
paradigm Programming paradigms Choosing coding approaches
debug Debugging approaches Systematic troubleshooting
council Multi-persona deliberation Getting diverse perspectives
decide Decision analysis frameworks Making important choices
reflect Metacognitive monitoring Assessing knowledge boundaries
hypothesis Scientific method Testing ideas systematically
debate Dialectical reasoning Exploring arguments
map Visual/spatial reasoning Diagramming concepts

Examples

Using trace for complex problem-solving

"Use the trace tool to think through how to refactor this authentication system"

Using model with first principles

"Apply first_principles thinking using the model tool to analyze why our build is slow"

Using council for multiple perspectives

"Use council to get security expert, performance engineer, and UX designer perspectives on this API design"

Using debug for systematic troubleshooting

"Use the debug tool with binary_search approach to find the source of this memory leak"

Using decide for structured decisions

"Use decide with weighted-criteria analysis to choose between PostgreSQL and MongoDB"

Tool Details

trace (Sequential Thinking)

Dynamic problem-solving through structured thoughts with revision and branching support.

  • Break down complex problems into steps
  • Revise previous thoughts as understanding evolves
  • Branch into alternative approaches
  • Track progress across multiple reasoning steps

model (Mental Models)

Apply proven mental models to problems:

  • first_principles - Break down to fundamentals
  • opportunity_cost - Analyze trade-offs
  • error_propagation - Understand error chains
  • rubber_duck - Explain to clarify
  • pareto_principle - Focus on high-impact factors
  • occams_razor - Prefer simpler explanations

pattern (Design Patterns)

Software architecture patterns:

  • modular_architecture - Component separation
  • api_integration - External service patterns
  • state_management - State handling approaches
  • async_processing - Asynchronous patterns
  • scalability - Growth considerations
  • security - Security best practices
  • agentic_design - AI agent patterns

paradigm (Programming Paradigms)

Programming approach selection:

  • imperative, procedural, object_oriented
  • functional, declarative, logic
  • event_driven, aspect_oriented
  • concurrent, reactive

debug (Debugging Approaches)

Systematic debugging methods:

  • binary_search - Divide and narrow
  • reverse_engineering - Work backwards
  • divide_conquer - Isolate components
  • backtracking - Trace execution
  • cause_elimination - Rule out causes
  • program_slicing - Focus on relevant code

council (Collaborative Reasoning)

Multi-persona problem-solving with diverse expertise, structured debate, and consensus building.

decide (Decision Framework)

Structured decision analysis:

  • pros-cons - Simple comparison
  • weighted-criteria - Multi-factor scoring
  • decision-tree - Branching outcomes
  • expected-value - Probability-weighted
  • scenario-analysis - Future scenarios

reflect (Metacognitive Monitoring)

Self-awareness about knowledge boundaries, claim certainty, and reasoning biases.

hypothesis (Scientific Method)

Formal scientific reasoning with hypothesis testing, variable identification, and evidence evaluation.

debate (Structured Argumentation)

Dialectical reasoning with thesis-antithesis-synthesis and argument strength analysis.

map (Visual Reasoning)

Visual thinking with diagrams, graphs, flowcharts, concept maps, and state diagrams.

Remote Access (Vercel Deployment)

Think-MCP can be deployed to Vercel for remote access from Claude Desktop and ChatGPT without local installation.

Deploy to Vercel

Deploy with Vercel

Or deploy manually:

# Install Vercel CLI
npm i -g vercel

# Deploy
vercel

Connect Claude Desktop (Remote)

Add to your claude_desktop_config.json:

{
  "mcpServers": {
    "think-mcp": {
      "command": "npx",
      "args": ["mcp-remote", "https://your-deployment.vercel.app/api/mcp"]
    }
  }
}

Connect ChatGPT

  1. Go to Settings → Connectors → Advanced → Developer Mode
  2. Add the URL: https://your-deployment.vercel.app/api/mcp

Development

# Clone the repository
git clone https://github.com/chirag127/think-mcp.git
cd think-mcp

# Install dependencies
npm install

# Build
npm run build

# Run tests
npm test

# Development mode (watch)
npm run dev

# Web development (Vercel)
cd web && npm install
npm run dev:web

Project Structure

think-mcp/
├── dist/               # Compiled JavaScript files (npm package)
├── src/                # STDIO server source (for npx/local usage)
│   ├── models/         # Data interfaces
│   ├── tools/          # Tool implementations
│   │   ├── traceServer.ts
│   │   ├── modelServer.ts
│   │   ├── patternServer.ts
│   │   ├── paradigmServer.ts
│   │   ├── debugServer.ts
│   │   ├── councilServer.ts
│   │   ├── decideServer.ts
│   │   ├── reflectServer.ts
│   │   ├── hypothesisServer.ts
│   │   ├── debateServer.ts
│   │   └── mapServer.ts
│   ├── toolNames.ts    # Tool name constants
│   └── index.ts        # Main server entry point
├── web/                # Next.js app for Vercel deployment
│   ├── app/
│   │   ├── layout.tsx
│   │   ├── page.tsx    # Landing page
│   │   └── api/
│   │       └── [transport]/
│   │           └── route.ts  # MCP endpoint
│   └── lib/
│       ├── mcp-tools.ts      # Tool registration
│       └── tools/            # Tool definitions
├── vercel.json         # Vercel deployment config
├── package.json
├── tsconfig.json
└── README.md

Tech Stack

  • TypeScript
  • Node.js 18+
  • Model Context Protocol SDK 1.25.1
  • Zod 3.25+ (validation)
  • Vitest (testing)

Author

Chirag Singhal (@chirag127)

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选