ThinkDrop Vision Service

ThinkDrop Vision Service

Provides screen capture, OCR text extraction, and visual language model scene understanding capabilities with continuous monitoring and automatic memory storage integration.

Category
访问服务器

README

Vision Service - MCP

Vision capabilities for ThinkDrop AI: screen capture, OCR, and VLM scene understanding.

Features

  • Screenshot Capture - Fast cross-platform screen capture
  • OCR - Text extraction using PaddleOCR (local, multilingual)
  • VLM - Scene understanding using MiniCPM-V 2.6 (lazy-loaded, optional)
  • Watch Mode - Continuous monitoring with change detection
  • Memory Integration - Auto-store to user-memory service as embeddings

Quick Start

# 1. Copy environment config
cp .env.example .env

# 2. Edit .env (set API keys, configure VLM, etc.)
nano .env

# 3. Start service
./start.sh

Service will be available at http://localhost:3006

Installation Options

Minimal (OCR Only - No GPU Required)

pip install -r requirements.txt
  • Screenshot + OCR only
  • ~200-500ms per capture
  • No VLM dependencies

Full (OCR + VLM - GPU Recommended)

# Uncomment VLM dependencies in requirements.txt
pip install torch transformers accelerate

# Or with CUDA support
pip install torch --index-url https://download.pytorch.org/whl/cu118
pip install transformers accelerate
  • Screenshot + OCR + VLM
  • 600-1500ms with GPU, 2-6s with CPU
  • ~2.4GB model download on first use

API Endpoints

Health Check

GET /health

Capture Screenshot

POST /vision/capture
{
  "region": [x, y, width, height],  # Optional
  "format": "png"
}

Extract Text (OCR)

POST /vision/ocr
{
  "region": [x, y, width, height],  # Optional
  "language": "en"                   # Optional
}

Describe Screen (VLM)

POST /vision/describe
{
  "region": [x, y, width, height],  # Optional
  "task": "Find the Save button",   # Optional focus
  "include_ocr": true,               # Include OCR text
  "store_to_memory": true            # Auto-store to user-memory
}

Start Watch Mode

POST /vision/watch/start
{
  "interval_ms": 2000,
  "change_threshold": 0.08,
  "run_ocr": true,
  "run_vlm": false,
  "task": "Monitor for errors"
}

Stop Watch Mode

POST /vision/watch/stop

Watch Status

GET /vision/watch/status

Configuration

Key environment variables in .env:

# Service
PORT=3006
API_KEY=your-vision-api-key-here

# OCR
OCR_ENGINE=paddleocr
OCR_LANGUAGE=en

# VLM (lazy-loaded)
VLM_ENABLED=true
VLM_MODEL=openbmb/MiniCPM-V-2_6
VLM_DEVICE=auto  # auto, cpu, cuda

# Watch
WATCH_DEFAULT_INTERVAL_MS=2000
WATCH_CHANGE_THRESHOLD=0.08

# User Memory Integration
USER_MEMORY_SERVICE_URL=http://localhost:3003
USER_MEMORY_API_KEY=your-user-memory-api-key

Performance

OCR Only (Minimal Setup)

  • Capture: 10-20ms
  • OCR: 200-500ms
  • Total: ~300-600ms per request
  • Memory: ~500MB

OCR + VLM (Full Setup)

  • Capture: 10-20ms
  • OCR: 200-500ms
  • VLM (GPU): 300-800ms
  • VLM (CPU): 2-5s
  • Total (GPU): ~600-1500ms
  • Total (CPU): ~2.5-6s
  • Memory: ~3-4GB (model loaded)

Watch Mode Strategy

Watch mode uses smart change detection to minimize VLM calls:

  1. Every interval: Capture + fingerprint comparison
  2. On change: Run OCR (if enabled)
  3. On significant change: Run VLM (if enabled)
  4. Auto-store: Send to user-memory service as embedding

This keeps VLM usage efficient while maintaining continuous awareness.

Integration with ThinkDrop AI

The vision service integrates with the MCP state graph:

// In AgentOrchestrator state graph
const visionResult = await mcpClient.callService('vision', 'describe', {
  include_ocr: true,
  store_to_memory: true,
  task: userMessage
});

// Result automatically stored as embedding in user-memory
// No screenshot files to manage!

Testing

Test Capture

curl -X POST http://localhost:3006/vision/capture \
  -H "Content-Type: application/json" \
  -d '{}'

Test OCR

curl -X POST http://localhost:3006/vision/ocr \
  -H "Content-Type: application/json" \
  -d '{}'

Test VLM (if enabled)

curl -X POST http://localhost:3006/vision/describe \
  -H "Content-Type: application/json" \
  -d '{"include_ocr": true, "store_to_memory": false}'

Test Watch

# Start
curl -X POST http://localhost:3006/vision/watch/start \
  -H "Content-Type: application/json" \
  -d '{"interval_ms": 2000, "run_ocr": true}'

# Status
curl http://localhost:3006/vision/watch/status

# Stop
curl -X POST http://localhost:3006/vision/watch/stop

Troubleshooting

OCR Not Working

  • Check PaddleOCR installation: pip list | grep paddleocr
  • Models download on first use (~100MB)
  • Check logs for download progress

VLM Not Loading

  • Ensure dependencies installed: pip list | grep transformers
  • Check available memory (need 4-8GB)
  • Set VLM_ENABLED=false to disable
  • Model downloads on first use (~2.4GB)

Performance Issues

  • CPU too slow: Disable VLM, use OCR only
  • Memory issues: Reduce watch interval, disable VLM
  • GPU not detected: Check CUDA installation

Architecture

vision-service/
├── server.py              # FastAPI app
├── src/
│   ├── services/
│   │   ├── screenshot.py  # mss wrapper
│   │   ├── ocr_engine.py  # PaddleOCR wrapper
│   │   ├── vlm_engine.py  # VLM wrapper (lazy)
│   │   └── watch_manager.py  # Watch loop
│   ├── routes/
│   │   ├── capture.py     # /vision/capture
│   │   ├── ocr.py         # /vision/ocr
│   │   ├── describe.py    # /vision/describe
│   │   └── watch.py       # /vision/watch/*
│   └── middleware/
│       └── validation.py  # API key validation
├── requirements.txt
├── start.sh
└── README.md

License

Part of ThinkDrop AI project.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选