Threat Intelligence MCP Server

Threat Intelligence MCP Server

Aggregates real-time threat intelligence from multiple sources including Feodo Tracker, URLhaus, CISA KEV, and ThreatFox, with IP/hash reputation checking via VirusTotal, AbuseIPDB, and Shodan for comprehensive security monitoring.

Category
访问服务器

README

Threat Intelligence MCP Server

MCP Python-3.10+ License Part of Agentic System

Threat intelligence aggregation from multiple sources for security monitoring.

Part of the Agentic System - a 24/7 autonomous AI framework with persistent memory.

Real-time threat intelligence aggregation for the AGI agentic cluster.

Version: 0.2.0

Features

  • Multi-source threat feeds: Feodo Tracker, URLhaus, CISA KEV, ThreatFox, Emerging Threats, Spamhaus DROP, Blocklist.de, CINSscore
  • IP/Hash reputation checking: VirusTotal, AbuseIPDB, Shodan integration
  • Bulk IP checking: Check up to 100 IPs in a single request
  • Network scanning integration: Check scanned devices against threat lists
  • Thread-safe caching: Intelligent caching with TTL and size limits
  • Dashboard API: Aggregated data for visualization (Flask-based)

Installation

cd ${AGENTIC_SYSTEM_PATH:-/opt/agentic}/mcp-servers/threat-intel-mcp
pip install -e .

# For dashboard support:
pip install -e ".[dashboard]"

# For development:
pip install -e ".[dev]"

Configuration

Add to ~/.claude.json:

{
  "mcpServers": {
    "threat-intel": {
      "command": "${AGENTIC_SYSTEM_PATH:-/opt/agentic}/.venv/bin/python3",
      "args": ["-m", "threat_intel_mcp.server"]
    }
  }
}

API Keys (Optional)

Set environment variables for enhanced capabilities:

Variable Service Purpose
VIRUSTOTAL_API_KEY VirusTotal Hash and IP lookups
ABUSEIPDB_API_KEY AbuseIPDB IP reputation and abuse reports
SHODAN_API_KEY Shodan IP intelligence and port scanning
OTX_API_KEY AlienVault OTX Threat pulse feeds

MCP Tools

Tool Description
get_threat_feeds List all available threat intelligence feeds with status
fetch_threat_feed Fetch IOCs from a specific feed by name
check_ip_reputation Check IP against multiple threat sources (VT, AbuseIPDB, Shodan)
check_hash_reputation Check file hash (MD5/SHA1/SHA256) reputation
check_bulk_ips NEW Check up to 100 IPs in a single request
get_cisa_kev Get CISA Known Exploited Vulnerabilities catalog
get_dashboard_summary Aggregated threat data for dashboards
get_recent_iocs Recent IOCs from ThreatFox (filterable by type)
check_network_against_threats Check network scan results for threats
get_threat_stats NEW Get cache statistics and API key status
clear_threat_cache NEW Clear the threat intelligence cache

Threat Feeds

Free (No API Key Required)

Feed Type Description
feodo_tracker IP List Botnet C&C IPs (Dridex, Emotet, TrickBot)
urlhaus_recent URL List Recent malware distribution URLs
sslbl_ip IP List SSL Blacklist malicious IPs
emerging_threats_compromised IP List Compromised host IPs
tor_exit_nodes IP List Known Tor exit node IPs
cisa_kev JSON Known Exploited Vulnerabilities catalog
threatfox_recent JSON Recent malware IOCs
blocklist_de_all IP List All attackers from blocklist.de
cinsscore_badguys IP List CINSscore malicious IPs
spamhaus_drop CIDR List Spamhaus Don't Route Or Peer

API-Enhanced

Feed API Key Enhanced Data
VirusTotal VIRUSTOTAL_API_KEY Detection ratios, vendor verdicts
AbuseIPDB ABUSEIPDB_API_KEY Abuse confidence score, report counts
Shodan SHODAN_API_KEY Open ports, services, vulnerabilities
AlienVault OTX OTX_API_KEY Threat pulses, related IOCs

Usage Examples

Check IP Reputation

# Returns threat level: clean/low/medium/high/critical
result = await check_ip_reputation("192.0.2.102")

Bulk IP Check

# Comma-separated
result = await check_bulk_ips("8.8.8.8, 1.1.1.1, 192.0.2.102")

# JSON array
result = await check_bulk_ips('["8.8.8.8", "1.1.1.1"]')

Network Scanner Integration

# Check network scan results against threats
scan_results = '{"devices": [{"ip": "192.0.2.217"}, {"ip": "192.0.2.25"}]}'
threat_check = await check_network_against_threats(scan_results)

Get Recent IOCs

# All recent IOCs
result = await get_recent_iocs()

# Filter by type: ip, ip:port, domain, url, md5, sha1, sha256
result = await get_recent_iocs(ioc_type="ip:port", limit=50)

Running the Dashboard

# Start the Flask dashboard server
threat-intel-dashboard

# Or directly:
python -m threat_intel_mcp.dashboard

Dashboard provides REST API endpoints for visualization tools.

Development

Running Tests

# Install dev dependencies
pip install -e ".[dev]"

# Run tests
pytest tests/ -v

# With coverage
pytest tests/ --cov=threat_intel_mcp --cov-report=html

Project Structure

threat-intel-mcp/
├── src/threat_intel_mcp/
│   ├── __init__.py      # Package exports
│   ├── config.py        # Configuration, validation, caching
│   ├── server.py        # FastMCP server and tools
│   └── dashboard.py     # Flask dashboard API
├── tests/
│   ├── conftest.py      # Pytest fixtures
│   ├── test_config.py   # Config module tests
│   └── test_server.py   # Server and tool tests
└── pyproject.toml       # Package configuration

Changelog

v0.2.0

  • New Features:

    • Bulk IP checking (up to 100 IPs)
    • Shodan integration for IP intelligence
    • Cache statistics and management tools
    • 3 additional threat feeds (blocklist.de, CINSscore, Spamhaus DROP)
  • Improvements:

    • Shared configuration module eliminates code duplication
    • Thread-safe caching with TTL and size limits
    • Proper input validation for all IOC types
    • Type hints throughout codebase
  • Bug Fixes:

    • Fixed all bare except clauses with proper exception handling
    • Removed unused imports and dependencies
    • Fixed variable scope issues
  • Developer Experience:

    • Comprehensive test suite (67 tests)
    • pytest-asyncio for async testing
    • Optional dependency groups (dashboard, dev)

v0.1.0

  • Initial release with basic threat feed aggregation

Part of the MCP Ecosystem

This server integrates with other MCP servers for comprehensive AGI capabilities:

Server Purpose
enhanced-memory-mcp 4-tier persistent memory with semantic search
agent-runtime-mcp Persistent task queues and goal decomposition
agi-mcp Full AGI orchestration with 21 tools
cluster-execution-mcp Distributed task routing across nodes
node-chat-mcp Inter-node AI communication
ember-mcp Production-only policy enforcement

See agentic-system-oss for the complete framework.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选