TiddlyWiki MCP Server
Provides AI assistants with access to TiddlyWiki wikis via HTTP API, supporting tiddler management (create, update, delete, search) and semantic search capabilities using Ollama embeddings for natural language queries.
README
TiddlyWiki MCP Server
A Model Context Protocol (MCP) server that provides AI assistants with access to TiddlyWiki wikis via the HTTP API. Supports semantic search using Ollama embeddings.
Features
MCP Tools
- search_tiddlers - Search tiddlers using TiddlyWiki filter syntax, semantic similarity, or hybrid (both combined)
- create_tiddler - Create new tiddlers with custom fields
- update_tiddler - Update existing tiddlers with diff preview
- delete_tiddler - Delete tiddlers with content preview
MCP Resources
- filter-reference://syntax - Complete TiddlyWiki filter syntax reference
Semantic Search
When Ollama is available, the server provides semantic search capabilities:
- Natural language queries find conceptually related tiddlers
- Uses
nomic-embed-textembeddings model - SQLite-vec for efficient vector similarity search
- Background sync keeps embeddings up-to-date
- Hybrid mode combines filter results with semantic reranking
Requirements
- Node.js 22+
- TiddlyWiki with HTTP API enabled (e.g., TiddlyWiki on Node.js with
listencommand) - Ollama (optional, for semantic search)
Build Prerequisites
This project uses native SQLite modules that require compilation. You'll need:
- Linux:
build-essential, Python 3 - macOS: Xcode Command Line Tools (
xcode-select --install) - Windows: Visual Studio Build Tools, Python 3
Installation
From npm (recommended)
TIDDLYWIKI_URL=http://localhost:8080 npx tiddlywiki-mcp-server
Or install globally:
npm install -g tiddlywiki-mcp-server
TIDDLYWIKI_URL=http://localhost:8080 tiddlywiki-mcp-server
From source
git clone https://github.com/ppetru/tiddlywiki-mcp.git
cd tiddlywiki-mcp
npm install
npm run build
Quick Start
1. Start TiddlyWiki with HTTP API
# Install TiddlyWiki if you haven't already
npm install -g tiddlywiki
# Create a new wiki and start it with HTTP API
tiddlywiki mywiki --init server
tiddlywiki mywiki --listen port=8080
2. (Optional) Set up Ollama for Semantic Search
# Install Ollama from https://ollama.ai
# Then pull the embedding model:
ollama pull nomic-embed-text
3. Start the MCP Server
TIDDLYWIKI_URL=http://localhost:8080 npx tiddlywiki-mcp-server
Configuration
All configuration is via environment variables. See .env.example for a complete reference.
Required
| Variable | Description |
|---|---|
TIDDLYWIKI_URL |
URL of your TiddlyWiki server (e.g., http://localhost:8080) |
Optional
| Variable | Default | Description |
|---|---|---|
MCP_TRANSPORT |
stdio |
Transport mode: stdio or http |
MCP_PORT |
3000 |
HTTP server port (when using http transport) |
OLLAMA_URL |
http://localhost:11434 |
Ollama API URL |
OLLAMA_MODEL |
nomic-embed-text |
Embedding model name |
EMBEDDINGS_ENABLED |
true |
Enable/disable semantic search |
EMBEDDINGS_DB_PATH |
./embeddings.db |
SQLite database path for embeddings |
AUTH_HEADER |
X-Oidc-Username |
HTTP header for authentication (can be any header your TiddlyWiki expects) |
AUTH_USER |
mcp-user |
Username for TiddlyWiki API requests |
Usage
stdio Mode (Claude Desktop)
Add to your Claude Desktop configuration (claude_desktop_config.json):
{
"mcpServers": {
"tiddlywiki": {
"command": "npx",
"args": ["tiddlywiki-mcp-server"],
"env": {
"TIDDLYWIKI_URL": "http://localhost:8080"
}
}
}
}
HTTP Mode
Start the server:
TIDDLYWIKI_URL=http://localhost:8080 MCP_TRANSPORT=http MCP_PORT=3000 npx tiddlywiki-mcp-server
The server exposes:
GET /health- Health check endpointPOST /mcp- MCP JSON-RPC endpoint (stateless mode)
Example Tool Usage
Filter search (TiddlyWiki filter syntax):
{
"name": "search_tiddlers",
"arguments": {
"filter": "[tag[Journal]prefix[2025-01]]",
"includeText": true
}
}
Semantic search (natural language):
{
"name": "search_tiddlers",
"arguments": {
"semantic": "times I felt anxious about work",
"limit": 10
}
}
Hybrid search (filter + semantic reranking):
{
"name": "search_tiddlers",
"arguments": {
"filter": "[tag[Journal]]",
"semantic": "productivity tips",
"limit": 20
}
}
Development
Setup
npm install
Running Tests
npm test
Tests run quickly (~1s) and include unit tests for all tool handlers.
Linting
npm run lint # Check for issues
npm run format # Fix formatting
npm run format:check # Check formatting only
Type Checking
npm run typecheck
Pre-commit Hooks
Pre-commit hooks are configured with lefthook and run automatically:
- Format check (Prettier)
- Lint (ESLint)
- Tests (Vitest)
- Type check (TypeScript)
Building
npm run build
Architecture
src/
├── index.ts # Entry point, transport setup, server lifecycle
├── tiddlywiki-http.ts # TiddlyWiki HTTP API client
├── service-discovery.ts # URL resolution (direct URLs, Consul SRV, hostname:port)
├── filter-reference.ts # Filter syntax documentation
├── logger.ts # Structured logging
├── tools/ # MCP tool handlers
│ ├── types.ts # Shared types and Zod schemas
│ ├── search-tiddlers.ts
│ ├── create-tiddler.ts
│ ├── update-tiddler.ts
│ └── delete-tiddler.ts
└── embeddings/ # Semantic search infrastructure
├── database.ts # SQLite-vec database
├── ollama-client.ts # Ollama API client
└── sync-worker.ts # Background embedding sync
Key Design Decisions
- Stateless HTTP mode: Each request gets its own Server/Transport instance to prevent request ID collisions with concurrent clients
- Graceful degradation: Semantic search is optional; the server works without Ollama
- Token-aware responses: Search results are validated against token limits with pagination suggestions
- Background sync: Embeddings are updated periodically without blocking requests
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。