Time-MCP
An agentic AI system that answers time-related questions by calling a time API tool and general questions using an LLM, accessible through a simple chat interface.
README
time-mcp
A minimal agentic AI system that answers time-related and general questions using a tool-augmented LLM pipeline.
Features
- Flask API: Provides the current timestamp.
- MCP Agent Server: Reasoning agent that detects user intent, calls tools (like the time API), engineers prompts, and interacts with an LLM via OpenRouter (OpenAI-compatible API).
- Streamlit UI: Simple chat interface to talk to the AI agent.
Setup
1. Clone and Install Dependencies
pip install -r requirements.txt
2. Environment Variable
Set your OpenRouter API key (get one from https://openrouter.ai):
export OPENROUTER_API_KEY=sk-...your-key...
3. Run the Servers
Open three terminals (or use background processes):
Terminal 1: Flask Time API
python flask_api.py
Terminal 2: MCP Agent Server
python mcp_server.py
Terminal 3: Streamlit UI
streamlit run streamlit_ui.py
The Streamlit UI will open in your browser (default: http://localhost:8501)
Usage
- Ask the agent any question in the Streamlit UI.
- If you ask about the time (e.g., "What is the time?"), the agent will call the Flask API, fetch the current time, and craft a beautiful, natural response using the LLM.
- For other questions, the agent will answer using the LLM only.
Architecture
[Streamlit UI] → [MCP Agent Server] → [Tools (e.g., Time API)]
↓
[LLM via OpenRouter]
- The MCP agent detects intent, calls tools as needed, engineers prompts, and sends them to the LLM.
- Easily extensible to add more tools (just add to the MCPAgent class).
Customization
- Add more tools: Implement new methods in
MCPAgentand updateself.tools. - Improve intent detection: Extend
detect_intent()inMCPAgent. - Change LLM model: Update the
modelfield incall_llm().
Requirements
- Python 3.7+
- See
requirements.txtfor dependencies.
Credits
- Built using Flask, Streamlit, OpenRouter, and Python.
- Inspired by agentic LLM design patterns.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。