Todoist AI MCP Server

Todoist AI MCP Server

Enables AI agents to access and modify Todoist accounts to manage tasks and projects on the user's behalf. It provides a suite of tools for task operations and supports interactive UI widgets for a rich visual experience in AI chat interfaces.

Category
访问服务器

README

Todoist AI and MCP SDK

Library for connecting AI agents to Todoist. Includes tools that can be integrated into LLMs, enabling them to access and modify a Todoist account on the user's behalf.

These tools can be used both through an MCP server, or imported directly in other projects to integrate them to your own AI conversational interfaces.

Using tools

1. Add this repository as a dependency

npm install @doist/todoist-ai

2. Import the tools and plug them to an AI

Here's an example using Vercel's AI SDK.

import { findTasksByDate, addTasks } from "@doist/todoist-ai";
import { TodoistApi } from "@doist/todoist-api-typescript";
import { streamText } from "ai";

// Create Todoist API client
const client = new TodoistApi(process.env.TODOIST_API_KEY);

// Helper to wrap tools with the client
function wrapTool(tool, todoistClient) {
    return {
        ...tool,
        execute(args) {
            return tool.execute(args, todoistClient);
        },
    };
}

const result = streamText({
    model: yourModel,
    system: "You are a helpful Todoist assistant",
    tools: {
        findTasksByDate: wrapTool(findTasksByDate, client),
        addTasks: wrapTool(addTasks, client),
    },
});

Using as an MCP server

Quick Start

You can run the MCP server directly with npx:

npx @doist/todoist-ai

Setup Guide

The Todoist AI MCP server is available as a streamable HTTP service for easy integration with various AI clients:

Primary URL (Streamable HTTP): https://ai.todoist.net/mcp

Claude Desktop

  1. Open Settings → Connectors → Add custom connector
  2. Enter https://ai.todoist.net/mcp and complete OAuth authentication

Cursor

Create a configuration file:

  • Global: ~/.cursor/mcp.json
  • Project-specific: .cursor/mcp.json
{
  "mcpServers": {
    "todoist": {
      "command": "npx",
      "args": ["-y", "mcp-remote", "https://ai.todoist.net/mcp"]
    }
  }
}

Then enable the server in Cursor settings if prompted.

Claude Code (CLI)

Firstly configure Claude so it has a new MCP available using this command:

claude mcp add --transport http todoist https://ai.todoist.net/mcp

Then launch claude, execute /mcp, then select the todoist MCP server.

This will take you through a wizard to authenticate using your browser with Todoist. Once complete you will be able to use todoist in claude.

Visual Studio Code

  1. Open Command Palette → MCP: Add Server
  2. Select HTTP transport and use:
{
  "servers": {
    "todoist": {
      "type": "http",
      "url": "https://ai.todoist.net/mcp"
    }
  }
}

Other MCP Clients

npx -y mcp-remote https://ai.todoist.net/mcp

For more details on setting up and using the MCP server, including creating custom servers, see docs/mcp-server.md.

Features

A key feature of this project is that tools can be reused, and are not written specifically for use in an MCP server. They can be hooked up as tools to other conversational AI interfaces (e.g. Vercel's AI SDK).

This project is in its early stages. Expect more and/or better tools soon.

Nevertheless, our goal is to provide a small set of tools that enable complete workflows, rather than just atomic actions, striking a balance between flexibility and efficiency for LLMs.

For our design philosophy, guidelines, and development patterns, see docs/tool-design.md.

Available Tools

For a complete list of available tools, see the src/tools directory.

OpenAI MCP Compatibility

This server includes search and fetch tools that follow the OpenAI MCP specification, enabling seamless integration with OpenAI's MCP protocol. These tools return JSON-encoded results optimized for OpenAI's requirements while maintaining compatibility with the broader MCP ecosystem.

Dependencies

MCP Server Setup

See docs/mcp-server.md for full instructions on setting up the MCP server.

Local Development Setup

See docs/dev-setup.md for full instructions on setting up this repository locally for development and contributing.

Widgets

This project includes support for MCP Apps – interactive UI widgets rendered inline in AI chat interfaces. Widgets provide rich visual representations of tool outputs (e.g., task lists) instead of plain text.

See docs/widgets.md for the widget architecture, build pipeline, and development workflow.

Quick Start

After cloning and setting up the repository:

  • npm start - Build and run the MCP inspector for testing
  • npm run dev - Development mode with auto-rebuild and restart

Releasing

This project uses release-please to automate version management and package publishing.

How it works

  1. Make your changes using Conventional Commits:

    • feat: for new features (minor version bump)
    • fix: for bug fixes (patch version bump)
    • feat!: or fix!: for breaking changes (major version bump)
    • docs: for documentation changes
    • chore: for maintenance tasks
    • ci: for CI changes
  2. When commits are pushed to main:

    • Release-please automatically creates/updates a release PR
    • The PR includes version bump and changelog updates
    • Review the PR and merge when ready
  3. After merging the release PR:

    • A new GitHub release is automatically created
    • A new tag is created
    • The publish workflow is triggered
    • The package is published to npm

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选