Todoist MCP Server

Todoist MCP Server

Enables AI assistants to manage Todoist tasks, projects, labels, sections, and comments through natural conversation. Supports comprehensive task operations including creation, updates, completion, and organization with natural language quick-add functionality.

Category
访问服务器

README

Todoist MCP Server

A comprehensive Model Context Protocol (MCP) server for Todoist that enables AI assistants to manage tasks, projects, labels, sections, and comments through natural conversation.

Features

The Todoist MCP server provides full task management capabilities:

📁 Project Management

  • List Projects - View all projects with hierarchy, colors, and metadata
  • Create Projects - Add new projects with customization options
  • Update Projects - Modify project properties like name, color, and view style

✅ Task Operations

  • List Tasks - View tasks with filters (by project, label, or Todoist filters)
  • Create Tasks - Add tasks with full control over properties
  • Quick Add Tasks - Use natural language to create tasks
  • Update Tasks - Modify task content, due dates, priorities, and labels
  • Complete Tasks - Mark tasks as done (handles recurring tasks automatically)

📑 Organization

  • Sections - List and create sections to organize tasks within projects
  • Labels - Manage personal labels for task categorization
  • Comments - Add and view comments on tasks and projects

Installation

Prerequisites

  • Python 3.9 or higher
  • A Todoist account with API access
  • Your Todoist API token (found in Settings → Integrations → Developer)

Setup

  1. Install the MCP Python SDK and dependencies:
pip install mcp httpx pydantic
  1. Save the server file:

Save todoist_mcp.py to a location on your system (e.g., ~/mcp-servers/todoist/)

  1. Make it executable:
chmod +x todoist_mcp.py

Configuration

For Claude Desktop

Add the following to your Claude Desktop configuration file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%\Claude\claude_desktop_config.json

{
  "mcpServers": {
    "todoist": {
      "command": "python",
      "args": ["/path/to/todoist_mcp.py"],
      "env": {
        "TODOIST_API_TOKEN": "your_api_token_here"
      }
    }
  }
}

Replace:

  • /path/to/todoist_mcp.py with the actual path to your server file
  • your_api_token_here with your Todoist API token

Getting Your Todoist API Token

  1. Log in to Todoist
  2. Go to Settings → Integrations → Developer
  3. Copy your API token
  4. Keep it secure - this token provides full access to your Todoist account

Usage Examples

Once configured, you can interact with Todoist through natural language:

Project Management

  • "Show me all my Todoist projects"
  • "Create a new project called 'Q1 Goals' with red color"
  • "Make my Work project a favorite"
  • "Change my Personal project to board view"

Task Management

  • "What tasks do I have due today?"
  • "Create a task 'Review quarterly report' in my Work project due tomorrow with high priority"
  • "Add task 'Call dentist next Monday at 2pm #Health p2'" (uses Quick Add)
  • "Mark task 123456 as complete"
  • "Update my 'Buy milk' task to be due tomorrow"
  • "Show me all tasks with the label 'urgent'"
  • "List tasks in my Work project"

Organization

  • "Create a section called 'In Progress' in my Work project"
  • "Show me all my labels"
  • "Create a new label called 'waiting' with blue color"
  • "Add a comment 'Started working on this' to task 789012"

Natural Language Quick Add

The Quick Add feature understands:

  • Projects: @ProjectName or #ProjectName
  • Labels: @LabelName
  • Priority: p1, p2, p3, p4 or !, !!, !!!
  • Due dates: today, tomorrow, next Monday, Jan 15, etc.

Examples:

  • "Meeting tomorrow at 3pm #Work p2"
  • "Buy groceries today @Shopping"
  • "Review document every Friday #Work"

Available Tools

Tool Description
todoist_list_projects List all projects with hierarchy and metadata
todoist_create_project Create a new project
todoist_update_project Update project properties
todoist_list_tasks List tasks with optional filters
todoist_create_task Create a task with full control
todoist_quick_add_task Add task using natural language
todoist_update_task Update task properties
todoist_complete_task Mark task as complete
todoist_list_sections List project sections
todoist_create_section Create a new section
todoist_list_labels List personal labels
todoist_create_label Create a new label
todoist_get_comments Get comments for task/project
todoist_add_comment Add a comment

Response Formats

Most tools support two response formats:

  • Markdown (default): Human-readable formatted text with emojis and structure
  • JSON: Machine-readable format with complete data

The server automatically uses the appropriate format based on context.

Rate Limits

Todoist API has the following limits:

  • Maximum 1000 requests per 15 minutes per user
  • 1 MB maximum request body size
  • 15 second processing timeout per request

The server provides clear error messages when limits are exceeded.

Error Handling

The server provides clear, actionable error messages:

  • Invalid API token errors with setup guidance
  • Rate limit notifications with wait recommendations
  • Resource not found errors with ID verification hints
  • Network timeout handling with retry suggestions

Security Notes

  • Store your API token securely - never commit it to version control
  • The API token provides full access to your Todoist account
  • Use environment variables for token storage
  • Consider using a separate Todoist account for testing

Troubleshooting

Common Issues

  1. "Invalid API token" error:

    • Verify your token in Todoist Settings → Integrations → Developer
    • Ensure the token is correctly set in the configuration
  2. "Resource not found" errors:

    • Check that project/task IDs are correct
    • IDs are now strings in Todoist API v2
  3. Rate limit errors:

    • Wait 15 minutes before making more requests
    • Consider batching operations where possible
  4. Connection timeouts:

    • Check your internet connection
    • Todoist API may be temporarily unavailable

Debug Mode

To see detailed error messages, run the server directly:

TODOIST_API_TOKEN=your_token python todoist_mcp.py

Development

Adding New Features

The server is built with FastMCP and follows MCP best practices:

  • Pydantic models for input validation
  • Comprehensive error handling
  • Support for both Markdown and JSON responses
  • Character limit handling for large responses

Code Structure

  • Pydantic Models: Input validation for all operations
  • Utility Functions: Shared API requests, error handling, formatting
  • Tool Definitions: Each tool with comprehensive docstrings
  • Response Formatting: Markdown and JSON output options

License

MIT License - See LICENSE file for details

Support

For issues or questions:

  1. Check the Todoist API documentation: https://developer.todoist.com/rest/v2/
  2. Review MCP documentation: https://modelcontextprotocol.io/
  3. File an issue on the project repository

Changelog

Version 1.0.0 (Initial Release)

  • Complete project management (list, create, update)
  • Full task operations (CRUD, complete, quick add)
  • Section and label management
  • Comment system support
  • Natural language task creation
  • Comprehensive error handling
  • Support for all Todoist filters
  • Markdown and JSON response formats

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选