TomTom MCP Server
Provides seamless access to TomTom's location services including search, routing, traffic and static maps data, enabling easy integration of precise geolocation data into AI workflows and development environments.
README
TomTom MCP Server
The TomTom MCP Server simplifies geospatial development by providing seamless access to TomTom’s location services, including search, routing, traffic and static maps data. It enables easy integration of precise and accurate geolocation data into AI workflows and development environments.
Demo

Table of Contents
- Demo
- Quick Start
- Integration
- Available Tools
- Contributing & Local Development
- Troubleshooting
- Contributing & Feedback
- License
Quick Start
Prerequisites
- Node.js 22+
- TomTom API key
How to obtain a TomTom API key:
- Create a developer account on TomTom Developer Portal
- Go to API & SDK Keys in the left-hand menu.
- Click the red Create Key button.
- Select all available APIs to ensure full access, assign a name to your key, and click Create.
For more details, visit the TomTom API Key Management Documentation.
Installation
npm install @tomtom-org/tomtom-mcp@latest
# or run directly without installing
npx @tomtom-org/tomtom-mcp@latest
Configuration
Set your TomTom API key using one of the following methods:
# Option 1: Use a .env file (recommended)
echo "TOMTOM_API_KEY=your_api_key" > .env
# Option 2: Environment variable
export TOMTOM_API_KEY=your_api_key
# option 3: Pass as CLI argument
npx @tomtom-org/tomtom-mcp@latest --key your_api_key
Usage
# Start MCP server
npx @tomtom-org/tomtom-mcp@latest
# Get help
npx @tomtom-org/tomtom-mcp@latest --help
Integration Guides
TomTom MCP Server can be easily integrated into various AI development environments and tools.
These guides help you integrate the MCP server with your tools and environments:
- Claude Desktop Setup - Instructions for configuring Claude Desktop to work with TomTom MCP server
- VS Code Setup - Setting up a development environment in Visual Studio Code
- Cursor AI Integration - Guide for integrating TomTom MCP server with Cursor AI
- WinSurf Integration - Instructions for configuring WindSurf to use TomTom MCP server
- Smolagents Integration - Example showing how to connect Smolagents AI agents to TomTom MCP server.
Available Tools
| Tool | Description | Documentation |
|---|---|---|
tomtom-geocode |
Convert addresses to coordinates with global coverage | https://developer.tomtom.com/geocoding-api/documentation/geocode |
tomtom-reverse-geocode |
Get addresses from GPS coordinates | https://developer.tomtom.com/reverse-geocoding-api/documentation/reverse-geocode |
tomtom-fuzzy-search |
Intelligent search with typo tolerance | https://developer.tomtom.com/search-api/documentation/search-service/fuzzy-search |
tomtom-poi-search |
Find specific business categories | https://developer.tomtom.com/search-api/documentation/search-service/points-of-interest-search |
tomtom-nearby |
Discover services within a radius | https://developer.tomtom.com/search-api/documentation/search-service/nearby-search |
tomtom-routing |
Calculate optimal routes between locations | https://developer.tomtom.com/routing-api/documentation/tomtom-maps/calculate-route |
tomtom-waypoint-routing |
Multi-stop route planning Routing API | https://developer.tomtom.com/routing-api/documentation/tomtom-maps/calculate-route |
tomtom-reachable-range |
Determine coverage areas by time/distance | https://developer.tomtom.com/routing-api/documentation/tomtom-maps/calculate-reachable-range |
tomtom-traffic |
Real-time incidents data | https://developer.tomtom.com/traffic-api/documentation/traffic-incidents/traffic-incidents-service |
tomtom-static-map |
Generate custom map images | https://developer.tomtom.com/map-display-api/documentation/raster/static-image |
Contributing & Local Development
Setup
git clone <repository>
cd tomtom-mcp
npm install
cp .env.example .env # Add your API key in .env
npm run build # Build TypeScript files
node ./bin/tomtom-mcp.js # Start the MCP server
Testing
npm run build # Build TypeScript
npm test # Run all tests
npm run test:unit # Unit tests only
npm run test:comprehensive # Integration tests
Testing Requirements
⚠️ Important: All tests require a valid API key in .env as they make real API calls (not mocked). This will consume your API quota.
Project Structure
src/
├── tools/ # MCP tool definitions
├── services/ # TomTom API wrappers
├── schemas/ # Validation schemas
├── utils/ # Utilities
└── createServer.ts # MCP Server creation logic
└── index.ts # Main entry point
Troubleshooting
API Key Issues
echo $TOMTOM_API_KEY # Check if set
Test Failures
ls -la .env # Verify .env exists
cat .env # Check API key
Build Issues
npm run build # Rebuild
npm cache clean --force # Clear cache
Contributing & Feedback
We welcome contributions to the TomTom MCP Server! Please see CONTRIBUTING.md for details on how to submit pull requests, report issues, and suggest improvements.
All contributions must adhere to our Code of Conduct and be signed-off according to the Developer Certificate of Origin (DCO).
Open issues on the GitHub repo
Security
Please see our Security Policy for information on reporting security vulnerabilities and our security practices.
License
This project is licensed under the Apache License 2.0 - see the LICENSE.md file for details.
Copyright (C) 2025 TomTom NV
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。