TON Blockchain MCP
A Model Context Protocol server that enables natural language interaction with the TON blockchain, allowing users to perform queries for balances, analyze trading patterns, detect hot trends, and conduct forensic investigations on blockchain data.
README
TON BLOCKCHAIN MCP
A Model Context Protocol (MCP) server for natural language interaction with the TON blockchain.

Features
- Natural Language Processing: Understand complex blockchain queries in plain English
- Trading Analysis: Analyze trading patterns, profitability, and strategies
- Hot Trends Detection: Find trending tokens, active pools, and high-activity accounts
- Forensics & Compliance: Conduct blockchain investigations and compliance checks
- Real-time Data: Access live TON blockchain data through TON API
Quick Start
Prerequisites
- Python 3.10+
- TON API key from TONAPI
Installation
- Clone the repository:
git clone https://github.com/devonmojito/ton-blockchain-mcp.git
cd ton-blockchain-mcp
- Install dependencies:
pip install -r requirements.txt
- Set up environment variables:
- You might want to put the API key in .env as well
export TON_API_KEY=your_api_key_here
- Run the server:
python -m src.mcp_server
PyPI Installation
You can also install the TON MCP Server directly from PyPI:
pip install ton-mcp-server
Using Docker
# Build and run with Docker Compose
docker-compose up --build
Example: Using TON MCP Server with Claude Desktop
You can easily use this MCP server with Claude Desktop for natural language blockchain queries. Below is an example of checking the TON balance for a wallet address:

Claude Desktop Configuration Example
To use this MCP server with Claude Desktop, add the following to your Claude Desktop config:
- You might need to replace the Python env setup with your own.
{
"mcpServers": {
"ton-mcp-server": {
"command": "/Users/devon/ton-mcp/ton-mcp-server/venv/bin/python",
"args": [
"-m",
"tonmcp.mcp_server"
],
"cwd": "/Users/devon/ton-mcp/ton-mcp-server/src",
"env": {
"PYTHONPATH": "/Users/devon/ton-mcp/ton-mcp-server/src"
}
}
}
}
Usage
Basic Queries
import asyncio
from mcp_client import McpClient
async def main():
client = McpClient("http://localhost:8000")
# Analyze an address
result = await client.call_tool("analyze_address", {
"address": "EQD1234...",
"deep_analysis": True
})
print(result)
asyncio.run(main())
Natural Language Examples
- "What's the balance of address EQD1234...?"
- "Find hot trading pairs in the last hour"
- "Analyze trading patterns for this wallet"
- "Show suspicious activity for address ABC"
- "Trace money flow from this address"
Configuration
Configuration can be provided via:
- Environment variables
config/settings.jsonfile- Runtime parameters
Key configuration options:
TON_API_KEY: Your TON API keyMCP_HOST: Server host (default: localhost)MCP_PORT: Server port (default: 8000)LOG_LEVEL: Logging level (default: INFO)
MCP Tools & System Prompts Documentation
Tools
analyze_address
Analyze a TON address for its balance, jetton holdings, NFTs, and recent activity. Optionally performs deep forensic analysis if deep_analysis is True. Use for questions about account overview, holdings, or activity.
Parameters:
address(str): TON address to analyzedeep_analysis(bool, optional): Enable deep forensic analysis
get_transaction_details
Get details and analysis for a specific TON blockchain transaction by its hash. Use for questions about a particular transaction, its participants, value, or type.
Parameters:
tx_hash(str): Transaction hash
find_hot_trends
Find trending tokens, pools, or accounts on the TON blockchain for a given timeframe and category. Use for questions about what's hot, trending, or popular on TON.
Parameters:
timeframe(str, optional): Time period (e.g., 1h, 24h, 7d)category(str, optional): Type of trends (tokens, pools, accounts)
analyze_trading_patterns
Analyze trading patterns for a TON address over a specified timeframe. Use for questions about trading activity, frequency, jetton transfers, or DEX swaps for an account.
Parameters:
address(str): TON addresstimeframe(str, optional): Time period (e.g., 24h)
System Prompts
trading_analysis: Generate trading analysis promptsforensics_investigation: Generate forensics promptstrend_analysis: Generate trend analysis prompts
Contributing
- Fork the repository
- Create a feature branch
- Commit your changes
- Push to the branch
- Create a Pull Request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Support
For support, please open an issue on GitHub or contact the author on Telegram: @devonmojito
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。