TOON MCP Server
Converts JSON data and system prompts to and from TOON (Token-Oriented Object Notation) format, reducing token usage by 30-60% when interacting with LLMs while preserving data structure.
README
toon-mcp-server
An MCP server and Python utility library for converting JSON data and system prompts to and from TOON format.
TOON (Token‑Oriented Object Notation) is a compact, human‑readable serialization format designed to reduce token usage when interacting with Large Language Models (LLMs). It preserves the structure of your data while using a syntax that is often 30–60% more token‑efficient than JSON, especially for tabular or repetitive data.
This project provides:
- A small, well‑typed Python library for:
- JSON ↔ TOON conversion.
- Wrapping system prompts in TOON format.
- An MCP stdio server that exposes these capabilities as tools, ready to be used from MCP‑compatible hosts (e.g. editors or orchestration layers).
- PyPI‑ready packaging and clear documentation, so you can confidently share this with the wider Python community.
Features
- JSON → TOON conversion: Convert any JSON‑serialisable Python object into TOON text using the
toonslibrary. - TOON → JSON conversion: Parse TOON back into Python objects that you can serialise as JSON.
- System prompt TOON wrapper: Wrap your system prompt in a minimal, explicit TOON structure to keep prompts structured and token‑efficient.
- MCP stdio server:
- Tool:
convert_json_to_toon - Tool:
convert_toon_to_json - Tool:
convert_system_prompt_to_toon
- Tool:
- Clean, simple API with type hints and docstrings suitable for library use.
Installation
Once published to PyPI, you will be able to install it with:
pip install toon-mcp-server
For local development (in this repository), you can install in editable mode:
cd path/to/this/repo
pip install -e .
This will install:
- The
toon_mcpPython package. - The
toon-mcp-serverconsole script, which runs the MCP stdio server.
Library Usage
The main public API lives in toon_mcp and is re‑exported from __init__.py for convenience.
from toon_mcp import (
json_to_toon,
toon_to_json,
system_prompt_to_toon,
)
JSON → TOON
from toon_mcp import json_to_toon
data = {
"user": {"id": 123, "name": "Alice"},
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Explain TOON format in simple terms."},
],
}
toon_text = json_to_toon(data)
print(toon_text)
- Input: Any JSON‑serialisable Python object (
dict,list,str, etc.). - Output: A TOON string that can be sent to an LLM or stored on disk.
You can optionally request a specific indentation level for readability:
toon_text = json_to_toon(data, indent=2)
TOON → JSON
from toon_mcp import toon_to_json
obj = toon_to_json(toon_text)
# `obj` is now a standard Python structure that can be serialised as JSON
- Input: TOON text (string).
- Output: Python object (typically
dictorlist) that you can then pass tojson.dumps, your LLM client, or other logic.
System prompt → TOON
System prompts are often large and repeated for many requests. This helper wraps your system prompt in a minimal TOON document:
from toon_mcp import system_prompt_to_toon
system_prompt = (
"You are a senior Python engineer. "
"Answer clearly, use type hints, and explain important design decisions."
)
toon_prompt = system_prompt_to_toon(system_prompt)
print(toon_prompt)
Conceptually, this is equivalent to serialising a structure like:
{"system_prompt": system_prompt}
but in TOON form, which tends to be more compact than raw JSON for larger prompts.
MCP Server
The MCP server is implemented in toon_mcp.server and is installed as the toon-mcp-server console script.
Under the hood it uses the official mcp Python library and runs over stdio:
- It exposes three tools:
convert_json_to_toonconvert_toon_to_jsonconvert_system_prompt_to_toon
- It is meant to be launched by an MCP‑compatible host (e.g. an editor, a CLI orchestrator, or other tooling).
Tools
-
convert_json_to_toon- Input:
payload– JSON‑serialisable structure (MCP will usually send this as a JSON object). - Output: TOON string.
- Input:
-
convert_toon_to_json- Input:
toon_text– TOON‑formatted string. - Output: Decoded Python structure (serialisable back to JSON by the host).
- Input:
-
convert_system_prompt_to_toon- Input:
prompt– plain text system prompt. - Output: TOON string wrapping the prompt (compatible with
toon_to_system_promptin the library).
- Input:
Running the server manually
After installing the package:
toon-mcp-server
This will start the MCP server on stdio (it is meant to be started by an MCP host, not usually by hand).
Example host configuration (conceptual)
Exact configuration varies per host, but a typical configuration might look like:
{
"mcpServers": {
"toon-mcp-server": {
"command": "toon-mcp-server",
"args": []
}
}
}
Consult your MCP host's documentation to see where and how to specify this configuration.
Project Layout
pyproject.toml: Build configuration and metadata for PyPI.src/toon_mcp/__init__.py: Public API exports.src/toon_mcp/codec.py: Core conversion functions.src/toon_mcp/server.py: MCP stdio server and tool definitions.tests/: Basic tests for conversions and prompt handling.
Design Notes
- Official TOON implementation: This project deliberately delegates TOON parsing and serialisation to the
toonslibrary, which is implemented in Rust and mirrors the standardjsonmodule API. This keeps the implementation small, predictable, and performant. - Simple, explicit API:
json_to_toon/toon_to_jsonoperate on arbitrary JSON‑serialisable structures.system_prompt_to_toonfocuses on the system prompt use‑case, keeping the structure obvious ({"system_prompt": ...}) while benefitting from TOON syntax.
- MCP first‑class: The MCP server is implemented once, in
toon_mcp.server, and exported through thetoon-mcp-serverconsole script so hosts can launch it easily.
Testing
After installing development dependencies, you can run tests with:
pytest
Basic tests cover:
- Round‑trip JSON → TOON → JSON.
You are encouraged to add more tests for your specific use‑cases and data shapes.
Error handling
The library and MCP tools are defensive and will give clear, explicit errors when misused:
-
json_to_toon/convert_json_to_toon- Expect a JSON‑serialisable object (dict, list, str, int, float, bool, or None).
- If the object cannot be serialised, they raise
TypeErrorwith a message explaining what type failed and why. - If
indentis not an integer orNone, aTypeErroris raised describing the wrong type.
-
toon_to_json/convert_toon_to_json- Expect a string containing TOON data.
- If a non‑string value is passed, they raise
TypeError. - If the TOON text is invalid, they raise
ValueErrorwith the underlying parse error message attached.
-
system_prompt_to_toon/convert_system_prompt_to_toon- Expect a plain string system prompt.
- If a non‑string value is passed, they raise
TypeError(wrapped as aValueErrorat MCP layer) with a message describing the incorrect type.
These messages are designed to surface nicely in both direct Python usage and when the tools are called through an MCP host.
Versioning
This project follows semantic versioning:
- MAJOR: Breaking changes.
- MINOR: Backwards‑compatible feature additions.
- PATCH: Backwards‑compatible bug fixes and small improvements.
Contributing
Contributions are welcome!
- Issues: Use GitHub Issues to report bugs or request features.
- Pull Requests:
- Keep changes focused and well‑documented.
- Add or update tests for new behaviour.
- Maintain type hints and docstrings.
License
This project is licensed under the MIT License. See the LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。