TOOT (Train of Operadic Thought) MCP

TOOT (Train of Operadic Thought) MCP

Enables context capture and reinforcement learning by recording successful work patterns and creating reasoning chains for cross-conversation continuity. Automatically captures positive feedback through Claude Code hooks to build reusable success patterns.

Category
访问服务器

README

TOOT (Train of Operadic Thought) MCP

Train of Operadic Thought (ToOT) is a context capture system that leaves Carton concept breadcrumbs for cross-conversation continuity and enables reinforcement learning through success pattern capture.

Features

  • Context Capture: Create reasoning chains and concept groups for conversation continuity
  • Success Pattern Recording: Capture positive feedback and successful approaches with user_said_i_did_a_good_job()
  • Intention Setting: Reference past successes when starting new work with i_need_to_do_a_good_job()
  • Automatic Feedback Loop: Integrate with Claude Code hooks for seamless pattern capture

Installation

pip install toot-mcp

MCP Configuration

Add to your Claude Code configuration:

{
  "mcpServers": {
    "toot": {
      "command": "python",
      "args": ["-m", "toot_mcp"],
      "env": {}
    }
  }
}

Claude Code Hook Integration

TOOT includes a powerful Claude Code hook integration that automatically triggers success pattern capture when you give positive feedback.

Setting Up the "Hey Good Job!" Hook

  1. Copy the hook file to your Claude Code hooks directory:
cp claude_code_hook.example ~/.claude/hooks/good_job_interceptor.py
chmod +x ~/.claude/hooks/good_job_interceptor.py
  1. Add the hook configuration to your ~/.claude/settings.json:
{
  "hooks": {
    "UserPromptSubmit": [
      {
        "hooks": [
          {
            "type": "command",
            "command": "/path/to/.claude/hooks/good_job_interceptor.py"
          }
        ]
      }
    ]
  }
}

Important: UserPromptSubmit hooks do NOT support the "matcher" field, unlike other hook types.

How the Hook Works

  1. When you start any message with "hey good job!", the hook detects it
  2. The hook injects TOOT instructions as context for the assistant
  3. The assistant sees the instructions and uses user_said_i_did_a_good_job()
  4. Your success pattern gets captured for future reference

Adding to Existing Hook Configuration

If you already have other hooks, just add the UserPromptSubmit section:

{
  "hooks": {
    "UserPromptSubmit": [
      {
        "hooks": [
          {
            "type": "command",
            "command": "/home/user/.claude/hooks/good_job_interceptor.py"
          }
        ]
      }
    ]
  }
}

Core Functions

user_said_i_did_a_good_job(name, domain, process, description, filepaths_involved, sequencing)

Records successful patterns for reinforcement learning.

Parameters:

  • name: Brief description of what was done well
  • domain: Area of work (e.g., "mcp_development", "system_architecture")
  • process: Specific type of work (e.g., "writing_readme", "debugging_hooks", "creating_library")
  • description: What specifically worked well and why
  • filepaths_involved: List of files that were part of the success
  • sequencing: Steps/actions that led to success

Example:

user_said_i_did_a_good_job(
    name="claude_code_hook_integration",
    domain="system_integration",
    process="debugging_hooks", 
    description="Successfully created Claude Code hook that automatically triggers TOOT success capture",
    filepaths_involved=["/home/user/.claude/hooks/good_job_interceptor.py", "/home/user/.claude/settings.json"],
    sequencing=["Research hook documentation", "Create hook script", "Configure settings.json", "Test integration"]
)

i_need_to_do_a_good_job(description, domain=None)

Sets intention for excellent work and references relevant past success patterns.

Parameters:

  • description: What needs to be done well
  • domain: Optional domain to find relevant success patterns

Example:

i_need_to_do_a_good_job(
    description="Integrate new MCP server with existing Claude Code workflow",
    domain="system_integration"
)

create_train_of_thought(name, initial_data)

Creates a new reasoning chain for complex problem solving.

update_train_of_thought(name, updated_data)

Appends to existing reasoning chain (append-only for integrity).

Workflow Integration

TOOT creates a powerful compound intelligence feedback loop:

  1. Work Phase: Use i_need_to_do_a_good_job() to set intention and reference past successes
  2. Success Phase: When work goes well, user says "hey good job!"
  3. Capture Phase: Hook triggers, assistant uses user_said_i_did_a_good_job()
  4. Compound Phase: Success patterns accumulate for future reference

File Storage

TOOT files are stored in /tmp/heaven_data/toot/ as JSON files with timestamps and reasoning chains.

Integration with Compound Intelligence Ecosystem

TOOT works seamlessly with:

  • Carton: Concept relationships and knowledge graphs
  • STARLOG: Project session tracking and development logs
  • GIINT: Multi-fire intelligence and response iteration
  • SEED: Identity management and publishing workflows

ToOT enables validated conceptual reasoning within the compound intelligence ecosystem, turning architectural conversations into systematic knowledge building! 🧠✨

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选