Trade-MCP
Enables trading automation through Zerodha Kite Connect API, allowing users to place buy/sell orders and fetch holdings via MCP tools accessible to Claude Desktop and other MCP-compatible clients.
README
Trade-MCP
A modular trading automation project using Zerodha Kite Connect and MCP (Modular Command Platform) for tool-based and resource-based automation. This project exposes trading actions (like placing orders and fetching holdings) as MCP tools, making them accessible to Claude Desktop and other MCP-compatible clients.
Features
- Zerodha Integration: Place buy/sell orders and fetch holdings using the Kite Connect API.
- MCP Tools: Expose trading actions as callable tools for automation and AI agents.
- Environment-based Secrets: API keys and secrets are loaded from a
.envfile for security. - Extensible: Easily add new tools or resources for more trading actions.
Setup
1. Clone the Repository
git clone <your-repo-url>
cd Trade-MCP
2. Create and Activate a Virtual Environment
uv venv
.venv\Scripts\activate # On Windows
# or
source .venv/bin/activate # On Linux/Mac
3. Install Dependencies
uv pip install -r requirements.txt
# or, if using pyproject.toml:
uv pip install .
4. Configure Environment Variables
Create a .env file in the project root:
API_KEY=your_zerodha_api_key
API_SECRET=your_zerodha_api_secret
5. Get Your Zerodha Access Token
To use the Zerodha API, you need an access token. Follow these steps:
-
Get Your API Key and Secret
- Obtain these from the Zerodha developer console.
-
Generate the Login URL
In a Python shell or script, run:from kiteconnect import KiteConnect kite = KiteConnect(api_key="your_api_key") print(kite.login_url())- Open the printed URL in your browser and log in with your Zerodha credentials.
-
Extract the
request_token- After login, you will be redirected to your redirect URL (set in the Zerodha app settings).
- The URL will look like:
http://localhost:8000/?request_token=REQUEST_TOKEN_HERE&action=login&status=success - Copy the
request_tokenvalue from the URL.
-
Exchange the
request_tokenfor anaccess_token
In a Python shell or script, run:data = kite.generate_session("REQUEST_TOKEN_HERE", api_secret="your_api_secret") print(data["access_token"])- Replace
"REQUEST_TOKEN_HERE"and"your_api_secret"with your actual values. - The printed value is your
access_token.
- Replace
-
Set the Access Token
- You can set this as an environment variable or use it directly in your code as needed.
Usage
Run the MCP Server
uv run --with mcp[cli] mcp run server.py
Or, if MCP CLI is installed in your environment:
mcp run server.py
Claude Desktop Integration
-
Add a server entry in your
claude_desktop_config.json:{ "mcpServers": { "Trade-MCP": { "command": "uv.EXE", # Exact Path to uv executable "args": [ "run", "--with", "mcp[cli]", "mcp", "run", "server.py" # Exact Path to your server script ] } } } -
Restart Claude Desktop.
-
The tools will appear in Claude's tool list.
Exposed Tools
add(a: int, b: int): Add two numbers.place_zerodha_buy_order(symbol: str, quantity: int): Place a buy order.place_zerodha_sell_order(symbol: str, quantity: int): Place a sell order.get_zerodha_holdings(): Get all holdings from Zerodha.
Extending
To add a new tool, define a function in server.py and decorate it with @mcp.tool():
@mcp.tool()
def my_tool(...):
...
License
MIT License
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。