TrainerML

TrainerML

Advanced machine learning platform with MCP integration that enables automated ML workflows from data analysis to model deployment, featuring smart preprocessing, 15+ ML algorithms, and interactive visualizations.

Category
访问服务器

README


title: TrainerML - MCP Hackathon emoji: 🤖 colorFrom: blue colorTo: purple sdk: gradio sdk_version: 4.44.0 app_file: enhanced_gradio_app.py pinned: false license: mit tags:

  • machine-learning
  • mcp
  • hackathon
  • automl
  • model-training
  • gradio short_description: Advanced ML trainer with MCP integration for the Agents & MCP Hackathon

🤖 TrainerML - MCP Hackathon Submission

Advanced Machine Learning Platform with Model Context Protocol Integration

🏆 Hackathon Track

Agents & MCP Hackathon - Track 1: MCP Tool / Server

🌟 Key Features

Core ML Capabilities

  • 📤 Smart CSV Upload: Instant dataset analysis and preprocessing
  • 🎯 Auto Problem Detection: Automatically determines regression vs classification
  • 🤖 15+ ML Algorithms: From Linear Regression to XGBoost and LightGBM
  • 📊 Advanced Metrics: Comprehensive evaluation with interactive visualizations
  • 💾 Model Export: Download trained models as pickle files

🚀 Innovative Features

  • 🔧 Auto Feature Engineering: Polynomial features and intelligent selection
  • 🤝 Ensemble Learning: Combine multiple models for superior performance
  • 📈 Interactive Visualizations: Plotly-powered charts and model explanations
  • 🔍 SHAP Explanations: Model interpretability and feature importance
  • ⚙️ Hyperparameter Tuning: Automated grid search optimization
  • 📱 Real-time Analysis: Live dataset profiling and recommendations

🌐 MCP Integration

  • Full MCP Server: Complete Model Context Protocol implementation
  • 8 Advanced Tools: From dataset analysis to model deployment
  • Claude Desktop Ready: Direct integration with AI assistants
  • Cursor IDE Support: Seamless developer workflow integration

🛠️ MCP Tools Available

  1. analyze_dataset - Comprehensive data analysis with visualizations
  2. train_ml_model - Advanced model training with feature engineering
  3. compare_models - Side-by-side algorithm comparison
  4. generate_model_explanations - SHAP-powered interpretability
  5. make_predictions - Real-time predictions with trained models
  6. export_model - Model deployment packages
  7. get_model_history - Training session management
  8. auto_ml_pipeline - Fully automated ML workflow

🚀 Quick Start

Web Interface

Simply upload your CSV file and follow the guided workflow:

  1. Upload your dataset
  2. Analyze data quality and characteristics
  3. Select target column and problem type
  4. Configure advanced features (auto feature engineering, ensemble learning)
  5. Train your model with one click
  6. Download the trained model

MCP Integration

For Claude Desktop

Add to your claude_desktop_config.json:

{
  "mcpServers": {
    "ml-trainer": {
      "command": "python",
      "args": ["enhanced_mcp_server.py"],
      "env": {}
    }
  }
}

Example MCP Commands

  • "Analyze this customer dataset and recommend the best ML approach"
  • "Train a Random Forest model to predict house prices with feature engineering"
  • "Compare XGBoost vs LightGBM on my classification problem"
  • "Generate SHAP explanations for model interpretability"

🎯 Innovation Highlights

1. Intelligent Automation

  • Auto Problem Detection: Analyzes target column characteristics
  • Smart Preprocessing: Handles missing values and categorical encoding
  • Feature Engineering: Creates polynomial features and selects optimal subset

2. Advanced ML Pipeline

  • Ensemble Methods: Voting classifiers/regressors for better accuracy
  • Hyperparameter Tuning: Grid search optimization
  • Cross-Validation: Robust performance estimation

3. Rich Visualizations

  • Interactive Plots: Plotly-powered prediction scatter plots
  • Feature Importance: Visual ranking of model features
  • Correlation Heatmaps: Data relationship analysis
  • Performance Metrics: Comprehensive evaluation dashboards

4. Production Ready

  • Model Export: Pickle files with preprocessing pipelines
  • API Integration: RESTful endpoints for deployment
  • MCP Protocol: Seamless AI assistant integration

📊 Supported Algorithms

Regression

  • Linear Regression, Ridge, Lasso, ElasticNet
  • Decision Tree, Random Forest
  • Gradient Boosting, XGBoost, LightGBM
  • Support Vector Regression, K-Nearest Neighbors

Classification

  • Logistic Regression, Decision Tree
  • Random Forest, Gradient Boosting
  • XGBoost, LightGBM
  • SVM, K-Nearest Neighbors, Naive Bayes

🏆 Demo Scenarios

Business Intelligence

  • Customer Churn Prediction: Upload customer data, auto-detect classification problem, train ensemble model
  • Sales Forecasting: Regression analysis with feature engineering for revenue prediction
  • Fraud Detection: Advanced classification with SHAP explanations

Research & Development

  • Automated EDA: Comprehensive dataset analysis with recommendations
  • Model Comparison: Benchmark multiple algorithms automatically
  • Feature Engineering: Discover optimal feature combinations

MCP Integration Demo

  • Claude Desktop: "Train a model to predict customer lifetime value using this dataset"
  • Cursor IDE: Integrate ML predictions directly into development workflow
  • API Integration: Use trained models in production applications

🚀 Technologies Used

  • Frontend: Gradio 4.0+ with custom CSS styling
  • Backend: Python with scikit-learn, XGBoost, LightGBM
  • Visualizations: Plotly, Matplotlib, Seaborn
  • MCP: Custom server implementation with 8 advanced tools
  • ML Pipeline: pandas, numpy, SHAP for explainability
  • Deployment: Hugging Face Spaces, Docker ready

📈 Performance Features

  • Real-time Processing: Optimized for datasets up to 100K rows
  • Memory Efficient: Smart sampling for large datasets
  • Parallel Processing: Multi-core hyperparameter tuning
  • Caching: Model history and feature importance caching

🎯 Hackathon Submission Highlights

  1. Complete MCP Implementation: 8 production-ready tools
  2. Advanced ML Features: Feature engineering, ensemble learning, SHAP
  3. User Experience: Intuitive Gradio interface with guided workflow
  4. Innovation: Auto-detection, smart preprocessing, interactive visualizations
  5. Production Ready: Exportable models, API integration, deployment ready

📧 Contact & Support

Built with ❤️ for the Agents & MCP Hackathon 2025

This project demonstrates the power of combining advanced machine learning with the Model Context Protocol to create intelligent, automated ML workflows that can be seamlessly integrated into AI assistant conversations and developer tools.


Ready to revolutionize your ML workflow? Upload your dataset and experience the future of automated machine learning! 🚀

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选