trykittai-mcp-server

trykittai-mcp-server

trykittai-mcp-server

Category
访问服务器

README

TryKitt.ai mcp Server

A FastMCP (Model Context Protocol) server that provides email verification and finding capabilities using the TryKitt.ai API. This server enables AI assistants to find and verify B2B email addresses with high accuracy and low bounce rates.

Features

  • Email Verification: Verify email addresses with advanced SMTP and catchall verification
  • Email Finding: Find email addresses for individuals using their name and company domain
  • Job Management: Track and monitor email verification/finding jobs
  • Real-time Processing: Get immediate results for email operations
  • High Accuracy: Leverages TryKitt.ai's advanced verification algorithms with <0.1% bounce rate

Installation

  1. Clone this repository:
git clone https://github.com/avivshafir/trykittai-mcp-server
cd trykittai-mcp-server
  1. Initialize a new Python environment with uv:
# Initialize a new uv project (if starting fresh)
uv init

# Or create a virtual environment
uv venv

# Activate the virtual environment
source .venv/bin/activate  # On macOS/Linux
  1. Install dependencies using uv:
# Using uv (recommended)
uv sync

Setup

  1. Get your TryKitt.ai API key:

    • Visit TryKitt.ai
    • Sign up for an account
    • Navigate to your API settings to get your API key
  2. Set your API key as an environment variable:

export TRYKITT_API_KEY="your_api_key_here"

Or create a .env file in the project root:

TRYKITT_API_KEY=your_api_key_here

Usage

Running the Server

Start the FastMCP server:

python server.py

The server will start and be available for MCP connections.

Adding to MCP Clients

To use this server with MCP-compatible clients, you'll need to configure the client to connect to this server.

Claude Desktop

Add the following configuration to your Claude Desktop config file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%\Claude\claude_desktop_config.json

{
  "mcpServers": {
    "trykittai": {
      "command": "python",
      "args": ["/path/to/your/trykittai-mcp-server/server.py"],
      "env": {
        "TRYKITT_API_KEY": "your_api_key_here"
      }
    }
  }
}

Other MCP Clients

For other MCP-compatible clients, configure them to connect to:

  • Command: python
  • Arguments: ["/path/to/your/trykittai-mcp-server/server.py"]
  • Environment Variables: TRYKITT_API_KEY=your_api_key_here

Using with uv

If you're using uv, you can also run the server with:

{
  "mcpServers": {
    "trykittai": {
      "command": "uv",
      "args": ["run", "python", "server.py"],
      "cwd": "/path/to/your/trykittai-mcp-server",
      "env": {
        "TRYKITT_API_KEY": "your_api_key_here"
      }
    }
  }
}

Note: Replace /path/to/your/trykittai-mcp-server with the actual absolute path to your project directory, and your_api_key_here with your actual TryKitt.ai API key.

Available Tools

1. Email Verification (verify_email_send)

Verify if an email address is valid and deliverable.

Parameters:

  • email (required): The email address to verify
  • custom_data (optional): Custom data to associate with the request

Example:

result = await verify_email_send("john.doe@example.com")

2. Email Finding (find_email)

Find an email address for a person based on their name and company domain.

Parameters:

  • full_name (required): The full name of the person
  • domain (required): The company domain or website
  • linkedin_url (optional): LinkedIn profile URL for better accuracy
  • custom_data (optional): Custom data to associate with the request

Example:

result = await find_email(
    full_name="John Doe",
    domain="example.com",
    linkedin_url="https://linkedin.com/in/johndoe"
)

3. Job Status (get_job_status)

Check the status of a previously submitted job.

Parameters:

  • job_id (required): The ID of the job to check

Example:

result = await get_job_status("job_123456")

4. List Jobs (list_jobs)

List all jobs (Note: This endpoint may have limited availability).

Example:

result = await list_jobs()

API Response Format

Successful Email Verification

{
  "id": "job_123456",
  "status": "completed",
  "result": {
    "email": "john.doe@example.com",
    "valid": true,
    "deliverable": true,
    "confidence": 0.95,
    "verification_type": "smtp_catchall"
  }
}

Successful Email Finding

{
  "id": "job_789012",
  "status": "completed",
  "result": {
    "email": "john.doe@example.com",
    "confidence": 0.88,
    "sources": ["pattern_matching", "web_scraping"]
  }
}

Error Handling

The server handles various error scenarios:

  • Invalid API keys
  • Rate limiting
  • Network timeouts
  • Invalid email formats
  • Domain verification failures

Common error responses:

{
  "error": "Invalid API key",
  "code": 401
}

Configuration

Environment Variables

  • TRYKITT_API_KEY: Your TryKitt.ai API key (required)

SSL Configuration

The server is configured to work with TryKitt.ai's API endpoints. SSL verification is currently disabled for compatibility.

Development

Project Structure

trykittai-mcp-server/
├── server.py          # Main FastMCP server implementation
├── pyproject.toml     # Project dependencies and configuration
├── uv.lock           # Dependency lock file
├── README.md         # This file
├── LICENSE           # MIT License
└── .venv/            # Virtual environment

Dependencies

  • fastmcp: FastMCP framework for building MCP servers
  • httpx: Async HTTP client for API requests
  • pydantic: Data validation and settings management

About TryKitt.ai

TryKitt.ai is an advanced email verification and finding service that:

  • Provides unlimited free email verification for individual users
  • Achieves <0.1% bounce rates through advanced verification
  • Works 2-5X faster than alternative solutions
  • Uses enterprise identity servers for catchall verification
  • Detects job changes and validates against real systems

Learn more at https://trykitt.ai/

License

This project is licensed under the MIT License - see the LICENSE file for details.

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

Support

For issues related to:

  • This MCP server: Open an issue in this repository
  • TryKitt.ai API: Contact TryKitt.ai support
  • FastMCP framework: Check the FastMCP documentation

Changelog

v1.0.0

  • Initial release with email verification and finding capabilities
  • Job status tracking
  • Real-time processing support
  • FastMCP integration

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选