trykittai-mcp-server
trykittai-mcp-server
README
TryKitt.ai mcp Server
A FastMCP (Model Context Protocol) server that provides email verification and finding capabilities using the TryKitt.ai API. This server enables AI assistants to find and verify B2B email addresses with high accuracy and low bounce rates.
Features
- Email Verification: Verify email addresses with advanced SMTP and catchall verification
- Email Finding: Find email addresses for individuals using their name and company domain
- Job Management: Track and monitor email verification/finding jobs
- Real-time Processing: Get immediate results for email operations
- High Accuracy: Leverages TryKitt.ai's advanced verification algorithms with <0.1% bounce rate
Installation
- Clone this repository:
git clone https://github.com/avivshafir/trykittai-mcp-server
cd trykittai-mcp-server
- Initialize a new Python environment with uv:
# Initialize a new uv project (if starting fresh)
uv init
# Or create a virtual environment
uv venv
# Activate the virtual environment
source .venv/bin/activate # On macOS/Linux
- Install dependencies using uv:
# Using uv (recommended)
uv sync
Setup
-
Get your TryKitt.ai API key:
- Visit TryKitt.ai
- Sign up for an account
- Navigate to your API settings to get your API key
-
Set your API key as an environment variable:
export TRYKITT_API_KEY="your_api_key_here"
Or create a .env file in the project root:
TRYKITT_API_KEY=your_api_key_here
Usage
Running the Server
Start the FastMCP server:
python server.py
The server will start and be available for MCP connections.
Adding to MCP Clients
To use this server with MCP-compatible clients, you'll need to configure the client to connect to this server.
Claude Desktop
Add the following configuration to your Claude Desktop config file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"trykittai": {
"command": "python",
"args": ["/path/to/your/trykittai-mcp-server/server.py"],
"env": {
"TRYKITT_API_KEY": "your_api_key_here"
}
}
}
}
Other MCP Clients
For other MCP-compatible clients, configure them to connect to:
- Command:
python - Arguments:
["/path/to/your/trykittai-mcp-server/server.py"] - Environment Variables:
TRYKITT_API_KEY=your_api_key_here
Using with uv
If you're using uv, you can also run the server with:
{
"mcpServers": {
"trykittai": {
"command": "uv",
"args": ["run", "python", "server.py"],
"cwd": "/path/to/your/trykittai-mcp-server",
"env": {
"TRYKITT_API_KEY": "your_api_key_here"
}
}
}
}
Note: Replace /path/to/your/trykittai-mcp-server with the actual absolute path to your project directory, and your_api_key_here with your actual TryKitt.ai API key.
Available Tools
1. Email Verification (verify_email_send)
Verify if an email address is valid and deliverable.
Parameters:
email(required): The email address to verifycustom_data(optional): Custom data to associate with the request
Example:
result = await verify_email_send("john.doe@example.com")
2. Email Finding (find_email)
Find an email address for a person based on their name and company domain.
Parameters:
full_name(required): The full name of the persondomain(required): The company domain or websitelinkedin_url(optional): LinkedIn profile URL for better accuracycustom_data(optional): Custom data to associate with the request
Example:
result = await find_email(
full_name="John Doe",
domain="example.com",
linkedin_url="https://linkedin.com/in/johndoe"
)
3. Job Status (get_job_status)
Check the status of a previously submitted job.
Parameters:
job_id(required): The ID of the job to check
Example:
result = await get_job_status("job_123456")
4. List Jobs (list_jobs)
List all jobs (Note: This endpoint may have limited availability).
Example:
result = await list_jobs()
API Response Format
Successful Email Verification
{
"id": "job_123456",
"status": "completed",
"result": {
"email": "john.doe@example.com",
"valid": true,
"deliverable": true,
"confidence": 0.95,
"verification_type": "smtp_catchall"
}
}
Successful Email Finding
{
"id": "job_789012",
"status": "completed",
"result": {
"email": "john.doe@example.com",
"confidence": 0.88,
"sources": ["pattern_matching", "web_scraping"]
}
}
Error Handling
The server handles various error scenarios:
- Invalid API keys
- Rate limiting
- Network timeouts
- Invalid email formats
- Domain verification failures
Common error responses:
{
"error": "Invalid API key",
"code": 401
}
Configuration
Environment Variables
TRYKITT_API_KEY: Your TryKitt.ai API key (required)
SSL Configuration
The server is configured to work with TryKitt.ai's API endpoints. SSL verification is currently disabled for compatibility.
Development
Project Structure
trykittai-mcp-server/
├── server.py # Main FastMCP server implementation
├── pyproject.toml # Project dependencies and configuration
├── uv.lock # Dependency lock file
├── README.md # This file
├── LICENSE # MIT License
└── .venv/ # Virtual environment
Dependencies
fastmcp: FastMCP framework for building MCP servershttpx: Async HTTP client for API requestspydantic: Data validation and settings management
About TryKitt.ai
TryKitt.ai is an advanced email verification and finding service that:
- Provides unlimited free email verification for individual users
- Achieves <0.1% bounce rates through advanced verification
- Works 2-5X faster than alternative solutions
- Uses enterprise identity servers for catchall verification
- Detects job changes and validates against real systems
Learn more at https://trykitt.ai/
License
This project is licensed under the MIT License - see the LICENSE file for details.
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
Support
For issues related to:
- This MCP server: Open an issue in this repository
- TryKitt.ai API: Contact TryKitt.ai support
- FastMCP framework: Check the FastMCP documentation
Changelog
v1.0.0
- Initial release with email verification and finding capabilities
- Job status tracking
- Real-time processing support
- FastMCP integration
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。