TSCodex MCP Images

TSCodex MCP Images

Enables comprehensive image processing, stock image search from Pexels and Pixabay, and AI image generation using OpenAI DALL-E with support for resizing, format conversion, color extraction, and watermarking.

Category
访问服务器

README

@tscodex/mcp-images

MCP (Model Context Protocol) server for comprehensive image processing, stock image search, and AI image generation. Built with TypeScript and Sharp for high-performance image manipulation.

Built on @tscodex/mcp-sdk - This project uses the official TSCodex MCP SDK for server infrastructure, authentication, configuration management, and protocol handling.


🚀 Quick Links

<div align="center">

📦 MCP Manager | 🌉 MCP Bridge

Desktop application for managing MCP servers | VS Code/Cursor extension bridge

</div>


🎯 What is This?

This is an MCP server built on the @tscodex/mcp-sdk that provides powerful image processing capabilities. It can work in two ways:

  1. Standalone Mode: Run directly via npx or npm, passing environment variables and configuration
  2. Managed Mode: Use with MCP Manager for workspace isolation, visual configuration, and seamless integration with Cursor

Architecture Overview

┌─────────────────────────────────────────────────────────────┐
│                    Cursor (IDE Editor)                      │
│  ┌───────────────────────────────────────────────────────┐  │
│  │         MCP Manager Bridge Extension                  │  │
│  │  - Auto-registers workspace                           │  │
│  │  - Syncs with MCP Manager                             │  │
│  │  - Updates Cursor mcp.json                            │  │
│  └───────────────────────────────────────────────────────┘  │
│                         │                                    │
│              HTTP API + WebSocket                            │
│                         │                                    │
└─────────────────────────┼────────────────────────────────────┘
                          │
┌─────────────────────────┼────────────────────────────────────┐
│              MCP Manager (Desktop App)                        │
│  ┌───────────────────────────────────────────────────────┐  │
│  │  - Process Management                                  │  │
│  │  - Workspace Isolation (Proxy)                        │  │
│  │  - Visual Configuration UI                            │  │
│  │  - Secrets Management (3-level override)              │  │
│  │  - Permissions System                                 │  │
│  │  - AI Agent Proxy                                     │  │
│  │  - MCP Tools (Dynamic Server)                         │  │
│  └───────────────────────────────────────────────────────┘  │
│                         │                                    │
│         ┌────────────────┴────────────────┐                  │
│         │                                 │                  │
│  ┌──────▼──────┐                  ┌──────▼──────┐          │
│  │ MCP Tools   │                  │ MCP Servers │          │
│  │ (Dynamic)   │                  │ (e.g. this) │          │
│  └──────┬──────┘                  └──────┬──────┘          │
│         │                                 │                  │
└─────────┼─────────────────────────────────┼──────────────────┘
          │                                 │
          └────────────┬────────────────────┘
                       │
          ┌────────────▼────────────┐
          │  @tscodex/mcp-sdk       │
          │  (Core SDK)              │
          └─────────────────────────┘

How It Works

The Problem: Real projects require each Cursor workspace to work with its own workspace context. For example, this image server needs the root path of the current project to create and work with images. But you can't run a separate server instance for each project.

The Solution: MCP Manager allows you to:

  • Run one server instance (e.g., @tscodex/mcp-images)
  • Create multiple workspace proxies that forward requests with workspace context
  • The SDK receives headers from the current workspace and allows one server to work with different workspaces

The Bridge: MCP Manager Bridge automatically:

  • Registers the workspace in MCP Manager by project path
  • Syncs Cursor with the manager
  • Registers proxy MCP servers in local mcp.json
  • Provides perfect encapsulation and connection between workspaces

🎨 Features

  • 🖼️ Image Processing: Resize, crop, optimize, convert formats, apply filters, rotate, watermark
  • 🔍 Stock Image Search: Search and download images from Pexels and Pixabay
  • 🤖 AI Image Generation: Generate images using OpenAI DALL-E
  • 🎨 Color Extraction: Extract dominant colors and generate color palettes
  • 📦 Multiple Formats: Support for WebP, JPEG, PNG, AVIF
  • High Performance: Powered by Sharp for fast image processing

📦 Installation

Option 1: Standalone (via npx)

npx @tscodex/mcp-images@latest

Option 2: Global Installation

npm install -g @tscodex/mcp-images

Option 3: Managed Mode (Recommended)

Use with MCP Manager for the best experience:

  1. Install MCP Manager: Download from GitHub Releases
  2. Install Bridge Extension: MCP Manager Bridge from VS Code Marketplace
  3. Add Server: In MCP Manager, add @tscodex/mcp-images as a new server
  4. Configure: Use the visual UI to configure the server (JSON Schema-based)
  5. Enable: Enable the server for your workspace in Cursor

Benefits of Managed Mode:

  • Visual Configuration: No need to edit JSON files manually
  • Workspace Isolation: Each project gets its own workspace proxy
  • Secure Secrets: 3-level secret override (Global → Workspace → Server)
  • Permissions Control: Granular control over what each server can access
  • AI Agent Integration: Use AI agents without exposing API keys to servers
  • Token Statistics: Track AI usage transparently
  • Auto-sync: Bridge automatically syncs with Cursor

🚀 Quick Start

Standalone Mode

# Start server with default settings
npx @tscodex/mcp-images@latest

# Server will start on port 3848 by default (host: 0.0.0.0)
# MCP endpoint: http://localhost:3848/mcp

# With custom host and port
npx @tscodex/mcp-images@latest --host 127.0.0.1 --port 3000

# With project root (REQUIRED for standalone mode)
npx @tscodex/mcp-images@latest --host 127.0.0.1 --port 4040 --root /path/to/project

# Get server metadata (for MCP Manager integration)
npx @tscodex/mcp-images@latest --meta

Managed Mode

  1. Start MCP Manager desktop application
  2. Open Cursor with your project
  3. Bridge Extension automatically:
    • Registers your workspace
    • Connects to MCP Manager
    • Syncs enabled servers to Cursor's mcp.json
  4. Enable Server: Click the play icon on @tscodex/mcp-images in the Bridge panel
  5. Configure: Use MCP Manager UI to configure the server (if needed)

⚙️ Configuration

Configuration File

Create .mcp-images.json in your project root:

{
  "root": ".",
  "defaultProvider": "pexels",
  "defaultFormat": "webp",
  "defaultMaxWidth": 1920,
  "defaultQuality": 80,
  "saveMetadata": true,
  "embedExif": false
}

Configuration Options:

  • root (string, optional): Project root directory
    • Use "." to use MCP_PROJECT_ROOT environment variable (managed mode)
    • Use absolute path for standalone mode
  • defaultProvider ("pexels" | "pixabay" | "openai" | "auto", default: "auto"): Default image provider
  • defaultFormat ("webp" | "jpeg" | "png" | "avif", default: "webp"): Default image format
  • defaultMaxWidth (number, default: 1920): Default maximum width (1-10000)
  • defaultQuality (number, default: 80): Default quality (1-100)
  • saveMetadata (boolean, default: true): Save JSON metadata alongside images
  • embedExif (boolean, default: false): Embed metadata in EXIF data

Secrets Management

⚠️ Security Note: API keys are stored as secrets (environment variables with SECRET_ prefix) instead of in configuration files.

In Standalone Mode:

export SECRET_PEXELS_API_KEY=your_pexels_api_key
export SECRET_PIXABAY_API_KEY=your_pixabay_api_key
export SECRET_OPENAI_API_KEY=your_openai_api_key

In Managed Mode: MCP Manager provides a 3-level secret override system:

  1. Global: Secrets available to all servers
  2. Workspace: Secrets specific to a workspace
  3. Server: Secrets specific to a server instance

This allows fine-grained control over what secrets each server can access.

Get API Keys:

  • Pexels: https://www.pexels.com/api/
  • Pixabay: https://pixabay.com/api/docs/
  • OpenAI: https://platform.openai.com/api-keys

🔒 Security & Permissions

Security Features

MCP Manager provides enterprise-grade security:

  1. OS Keychain Storage: Secrets are stored in the operating system's secure keychain (Windows Credential Manager, macOS Keychain, Linux Secret Service)
  2. No Key Exposure: API keys are never passed directly to MCP servers. Servers that need AI access use the AI Agent proxy mechanism
  3. Process Isolation: Each server runs in its own process with isolated environment
  4. Permission System: Granular control over what each server can access

Permissions System

MCP Manager's permission system allows you to configure:

  • Environment Variables: Which environment variables are available to the server
  • Secrets Access: Which secrets the server can access
  • AI Agent Access: Whether the server can use the AI Agent proxy
  • File System Access: Workspace root access (always scoped to project)

Example Permission Configuration:

{
  "envVars": ["NODE_ENV", "DEBUG"],
  "secrets": ["SECRET_PEXELS_API_KEY", "SECRET_PIXABAY_API_KEY"],
  "aiAgent": {
    "enabled": true,
    "allowedModels": ["gpt-4", "gpt-3.5-turbo"]
  }
}

🤖 AI Agent Integration

MCP Manager includes a built-in AI Agent that:

  1. Registers OpenAI-compatible APIs: Configure via baseUrl and API key
  2. Provides Proxy: Servers can use AI without direct API key access
  3. Token Statistics: Track all AI usage transparently
  4. Permission-Based: Each server must have AI Agent access enabled in permissions

How It Works:

  1. Register AI Provider in MCP Manager:

    • Base URL: https://api.openai.com/v1
    • API Key: (stored securely in OS keychain)
    • Model: gpt-4, gpt-3.5-turbo, etc.
  2. Enable for Server: In server permissions, enable AI Agent access

  3. Use in Server: The SDK provides methods to access the AI Agent:

    const aiResponse = await server.getAiAgent().chat({
      model: 'gpt-4',
      messages: [{ role: 'user', content: 'Generate image prompt' }]
    });
    
  4. Track Usage: All token usage is tracked and displayed in MCP Manager

Benefits:

  • ✅ No API keys exposed to servers
  • ✅ Centralized AI usage tracking
  • ✅ Easy to switch AI providers
  • ✅ Cost monitoring

🛠️ Available Tools

Image Processing

  • image_process_local - Process local image: resize, crop, convert format, optimize
  • image_analyze - Analyze local image: dimensions, format, file size, metadata
  • image_optimize - Automatically optimize local image: compress, convert to best format
  • image_create_placeholder - Create placeholder image with dimensions displayed
  • image_create_favicon - Create favicon from image (multiple sizes)
  • image_add_watermark - Add watermark to image (text or image)
  • image_apply_filters - Apply filters: blur, sharpen, grayscale, sepia, brightness, contrast
  • image_rotate - Rotate image by specified angle
  • image_crop_custom - Crop image by exact coordinates

Stock Images

  • images_provider_status - Check status of image providers
  • stock_images_search - Search for images from Pexels or Pixabay
  • stock_images_download_to_project - Download and save image from provider to project

AI Generation

  • ai_generate_image - Generate image using OpenAI DALL-E

Color Extraction

  • image_extract_colors_local - Extract dominant colors and color palette from local image
  • generate_color_palette_image - Generate visual color palette image from local image

📚 Example Usage

Example 1: Search and Download Stock Image

# 1. Search for images
# Tool: stock_images_search
# Query: "cozy coffee shop interior"

# 2. Download image to project
# Tool: stock_images_download_to_project
# Photo ID: 123456
# Target Path: public/images/hero.webp
# Format: webp
# Max Width: 1920

Example 2: Process Local Image

# Tool: image_process_local
# Image Path: public/images/photo.jpg
# Output Path: public/images/photo-optimized.webp
# Format: webp
# Max Width: 1920
# Quality: 85

Example 3: Generate AI Image

# Tool: ai_generate_image
# Prompt: "a cozy coffee shop interior with warm lighting"
# Size: large (1024x1024px)
# Target Path: public/images/generated.webp
# Format: webp

🔧 Environment Variables

All environment variables are optional with sensible defaults:

# Server settings
MCP_PORT=3848              # Server port (default: 3848)
MCP_HOST=0.0.0.0          # Server host (default: 0.0.0.0)
MCP_PATH=/mcp             # MCP endpoint path (default: /mcp)
MCP_PROJECT_ROOT=/path     # Project root directory

# Configuration (alternative to config file)
DEFAULT_PROVIDER=pexels
DEFAULT_FORMAT=webp
DEFAULT_MAX_WIDTH=1920
DEFAULT_QUALITY=80
SAVE_METADATA=true
EMBED_EXIF=false

# API Keys (required for stock images and AI generation)
SECRET_PEXELS_API_KEY=your_key
SECRET_PIXABAY_API_KEY=your_key
SECRET_OPENAI_API_KEY=your_key
SECRET_OPENAI_ORGANIZATION_ID=your_org_id

🏗️ Built on @tscodex/mcp-sdk

This project is built on top of @tscodex/mcp-sdk, which provides:

  • MCP Server Infrastructure: HTTP transport, protocol handling, request routing
  • Authentication & Session Management: Secure session handling
  • Configuration Loading: CLI args, env vars, config files with priority system
  • Secrets Management: SECRET_* environment variable handling
  • Workspace Context: Automatic workspace root detection and header handling
  • AI Agent Integration: Built-in support for AI Agent proxy
  • Type Safety: Full TypeScript support with TypeBox schemas

Key Features of the SDK:

  • Fast HTTP-based MCP server creation
  • No database required - stateless design
  • Works with or without MCP Manager
  • Automatic workspace context from headers
  • JSON Schema-based configuration

🧪 Development

# Clone repository
git clone https://github.com/unbywyd/tscodex-mcp-images.git
cd tscodex-mcp-images

# Install dependencies
npm install

# Build
npm run build

# Run in development mode
npm run dev

# Run production build
npm start

# Get metadata (for MCP Manager)
npm run meta

📁 Project Structure

cursor-stock-images-mcp-v2/
├── src/
│   ├── index.ts              # Entry point
│   ├── server.ts             # Server setup
│   ├── config.ts             # Configuration schema
│   ├── config-loader.ts      # Config loading logic
│   ├── tools/                # MCP tools
│   │   ├── image-processing.ts
│   │   ├── stock-images.ts
│   │   ├── ai-generation.ts
│   │   └── color-extraction.ts
│   ├── providers/            # Image providers
│   │   ├── pexels.ts
│   │   ├── pixabay.ts
│   │   └── openai.ts
│   ├── image-processor.ts    # Image processing logic
│   ├── color-extractor.ts    # Color extraction logic
│   └── utils.ts              # Utilities
├── dist/                     # Compiled JavaScript
├── package.json
└── README.md

📋 Requirements

  • Node.js >= 18.0.0
  • API keys for providers (optional, but required for stock images and AI generation)

🔗 Related Projects


📄 License

MIT


👤 Author

unbywyd

Website: tscodex.com


🔗 Links

  • GitHub: https://github.com/unbywyd/tscodex-mcp-images
  • NPM: https://www.npmjs.com/package/@tscodex/mcp-images
  • Issues: https://github.com/unbywyd/tscodex-mcp-images/issues
  • MCP SDK: https://www.npmjs.com/package/@tscodex/mcp-sdk
  • MCP Manager: https://github.com/unbywyd/tscodex-mcp-manager-app
  • MCP Bridge: https://github.com/unbywyd/tscodex-mcp-manager-bridge

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选