Turbify Store MCP Server
Provides tools to create, update, delete, and search catalog items through the Turbify Store Catalog API.
README
Turbify Store MCP Server
A Model Context Protocol (MCP) server for managing Turbify Store catalogs. This server provides tools to create, update, delete, and search catalog items through the Turbify Store Catalog API.
Features
- Item Management: Create, update, and delete catalog items
- Search: Search through your catalog using keywords
- Configuration: View and manage store settings
- Error Handling: Comprehensive error handling and reporting
- Documentation: Built-in API documentation via MCP resources
Installation
- Clone this repository:
git clone <your-repo-url>
cd turbify-mcp
- Initialize with uv (recommended):
uv init .
uv add fastmcp pydantic requests urllib3
Or install with pip:
pip install -e .
Configuration
Set the following environment variables:
export TURBIFY_STORE_ID="your_store_id"
export TURBIFY_CONTRACT_TOKEN="your_contract_token"
Or create a .env file:
TURBIFY_STORE_ID=your_store_id
TURBIFY_CONTRACT_TOKEN=your_contract_token
Usage
Running the Server
python src/turbify_mcp/server.py
Or if installed:
turbify-mcp
Using MCP Inspector
mcp-inspector "python run_server.py"
Available Tools
create_catalog_item
Create a new item in your catalog:
create_catalog_item(
item_id="ITEM123",
name="Sample Product",
table_id="TABLE1",
price=29.99,
sale_price=24.99,
orderable="yes",
taxable="yes"
)
update_catalog_item
Update an existing item:
update_catalog_item(
item_id="ITEM123",
name="Updated Product Name",
price=34.99
)
delete_catalog_item
Delete an item:
delete_catalog_item(item_id="ITEM123")
search_catalog_items
Search for items:
search_catalog_items(
keyword="shirt",
start_index=1,
end_index=50
)
get_store_config
Get current configuration:
get_store_config()
MCP Integration
This server can be used with any MCP-compatible client, such as:
- Claude Desktop
- Custom MCP clients
- Development tools that support MCP
Claude Desktop Configuration
Add to your Claude Desktop config:
{
"mcpServers": {
"turbify-store": {
"command": "python",
"args": ["path/to/turbify-store-mcp/src/turbify_store_mcp/server.py"],
"env": {
"TURBIFY_STORE_ID": "your_store_id",
"TURBIFY_CONTRACT_TOKEN": "your_contract_token"
}
}
}
}
API Response Format
All tools return JSON responses with the following structure:
Success Response
{
"status": "success",
"messages": [
{
"code": "SUCCESS",
"message": "Operation completed successfully"
}
],
"items": [...], // For search operations
"item_ids": [...] // For some operations
}
Error Response
{
"status": "error",
"errors": [
{
"code": "ERROR_CODE",
"message": "Error description"
}
]
}
Development
Setting up for development:
# Install with development dependencies
uv add --dev pytest pytest-asyncio black mypy
# Run tests
uv run pytest
# Format code
uv run black .
# Type checking
uv run mypy src/
Project Structure
turbify-mcp/
├── src/
│ └── turbify_mcp/
│ ├── __init__.py
│ └── server.py
├── tests/
├── pyproject.toml
├── README.md
└── .env
Requirements
- Python 3.8+
- Turbify Store API credentials
- FastMCP
- Pydantic v2
- Requests
Limitations
- Maximum 1000 items per search query (Turbify API limit)
- Rate limiting as per Turbify Store API terms
- XML-based API (handled internally)
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
License
[Add your license information here]
Support
For issues related to:
- This MCP server: Create an issue in this repository
- Turbify Store API: Consult Turbify Store API documentation
- MCP protocol: Check the Model Context Protocol specification
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。