
Twilio WhatsApp FastMCP Server
A simple server that enables AI models to send WhatsApp messages via the Twilio API by exposing a send\_whatsapp tool through the FastMCP framework.
README
Twilio WhatsApp FastMCP Server 💬
This project provides a simple FastMCP server that allows sending WhatsApp messages using the Twilio API.
Features
- 📲 Sends WhatsApp messages via Twilio.
- 🤖 Exposes a
send_whatsapp
tool for use with FastMCP clients (like AI models). - 🔒 Loads configuration securely from a
.env
file. - 🧪 Includes a basic test script (
/home/rj/Code/mcp-generated/twilio_test.py
) for direct Twilio API interaction.
Setup
-
Get the Code: Clone this repository or download the source files into
/home/rj/Code/mcp-generated/
. -
**Create a Virtual Environment (Recommended){ @@ -77,11 +77,11 @@
2. Running the Test Script
-The /home/rj/Code/mcp-generated/twilio_test.py
script provides a way to directly test sending a message using your Twilio credentials without the FastMCP server.
+The /home/rj/Code/mcp-generated/twilio_test.py
script provides a way to directly test sending a message using your Twilio credentials without the FastMCP server. 🛠️
- Modify the script: Ensure the
to=
number in/home/rj/Code/mcp-generated/twilio_test.py
is a WhatsApp number linked to your Twilio Sandbox (if using the Sandbox) or any valid WhatsApp number (if using a purchased Twilio number). Thefrom_
number should typically be your Twilio Sandbox number (whatsapp:+14155238886
) or your purchased Twilio WhatsApp number. - Run the script:
python /home/rj/Code/mcp-generated/twilio_test.py
```
This will attempt to send a hardcoded message ("Is this working?") from the specified Twilio number to the specified recipient.
:**
bash 🌱 cd /home/rj/Code/mcp-generated/ python -m venv venv source venv/bin/activate # On Windows use `venv\Scripts\activate`
-
Install Dependencies: The necessary dependencies are listed in
/home/rj/Code/mcp-generated/whatsapp_server.py
. You can install them using pip:pip install twilio python-dotenv pydantic-settings fastmcp
Alternatively, if using the FastMCP framework features:
fastmcp install /home/rj/Code/mcp-generated/whatsapp_server.py
-
Configure Environment Variables:
- Sign up for a Twilio account if you don't have one.
- Get your Account SID and Auth Token from the Twilio Console.
- Set up the Twilio Sandbox for WhatsApp or configure a dedicated Twilio WhatsApp number.
- Create a file named
.env
in the project root directory (/home/rj/Code/mcp-generated/
). - Add your Twilio credentials and WhatsApp number to the
.env
file: 🔑# /home/rj/Code/mcp-generated/.env TWILIO_ACCOUNT_SID=ACxxxxxxxxxxxxxxxxxxxxxxxxxxxxx TWILIO_AUTH_TOKEN=your_auth_token_here TWILIO_WHATSAPP_NUMBER=+14155238886 # Use your Twilio WhatsApp number (Sandbox or purchased)
- Important: Replace the placeholder values with your actual credentials and number. Ensure the
TWILIO_WHATSAPP_NUMBER
starts with a+
and includes the country code (E.164 format). Thewhatsapp_server.py
script will automatically add the+
if it's missing from the.env
file. ❗ - Trial Account Note: If you are using a Twilio trial account, the
TWILIO_WHATSAPP_NUMBER
will likely be the Twilio Sandbox number (+14155238886
). You must enroll any recipient (to_number
) phone numbers in your Twilio Sandbox via the Twilio console for messages to be delivered successfully. Sending to non-enrolled numbers requires upgrading your Twilio account.
Usage
1. Running the FastMCP Server
To make the send_whatsapp
tool available for remote calls (e.g., from an AI model integrated with FastMCP):
python /home/rj/Code/mcp-generated/whatsapp_server.py
The server will start and print the Twilio number it's configured to use. It will listen for incoming requests (by default via stdio, but FastMCP supports other transports). A FastMCP client can then call the send_whatsapp
tool with to_number
(including the whatsapp:
prefix, e.g., whatsapp:+15551234567
) and message
arguments.
Example Interaction (Conceptual):
A client (like an AI 🤖) might send a request like this (format depends on the transport):
{
"tool_name": "send_whatsapp",
"arguments": {
"to_number": "whatsapp:+15551234567",
"message": "Hello from the FastMCP server!"
}
}
The server will process this, call the Twilio API, and return a confirmation or error message.
2. Running the Test Script
The /home/rj/Code/mcp-generated/twilio_test.py
script provides a way to directly test sending a message using your Twilio credentials without the FastMCP server. 🛠️
- Modify the script: Ensure the
to=
number in/home/rj/Code/mcp-generated/twilio_test.py
is a WhatsApp number linked to your Twilio Sandbox (if using the Sandbox) or any valid WhatsApp number (if using a purchased Twilio number). Thefrom_
number should typically be your Twilio Sandbox number (whatsapp:+14155238886
) or your purchased Twilio WhatsApp number. - Run the script:
This will attempt to send a hardcoded message ("Is this working?") from the specified Twilio number to the specified recipient.python /home/rj/Code/mcp-generated/twilio_test.py
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。