Ultimate MCP Coding Platform
Turns any LLM into a coding co-pilot with production-ready MCP server providing lint, test, execution, generation, and graph tools. Features Neo4j persistence, OpenAI Agent integration, REST API, and React frontend for comprehensive code development assistance.
README
Ultimate MCP Coding Platform
Ultimate MCP is a production-ready Model Context Protocol platform that turns any LLM into a coding co-pilot. It ships with a FastAPI + FastMCP backend, Neo4j graph persistence, OpenAI Agent integration, a React frontend, and Docker Compose orchestration.
Features
- Real MCP server with lint, test, execution, generation, and graph tools
- Neo4j persistence for tool artefacts with aggregation metrics
- REST API mirroring MCP tools and secured by bearer token + rate limiting
- Structured logging, strict CORS, security headers, and per-request IDs
- React + Vite frontend for human operators
- OpenAI Agents SDK bridge for autonomous tool discovery and execution
- Complete CI pipeline (lint, type-check, tests with coverage, Docker builds)
- Docker Compose for one-command local deployment
Repository Layout
backend/ FastAPI MCP server and tool implementations
frontend/ React TypeScript application
scripts/ Developer automation (setup & smoke tests)
deployment/ Docker Compose specification
docs/ Architecture, API, security, and operations guides
Quickstart
1. Dependencies
- Python 3.13+
- Node.js 20+
- Docker & Docker Compose (for containerised runs)
2. Bootstrap Environment
scripts/setup.py
This creates backend/.venv, installs Python requirements, and runs npm install for the frontend.
3. Run Locally (Developer Mode)
Backend:
source backend/.venv/bin/activate
uvicorn mcp_server.server:app --reload
Frontend:
cd frontend
npm run dev -- --host 0.0.0.0 --port 3000
Open the UI at http://localhost:3000. The API docs live at http://localhost:8000/docs.
4. Run with Docker Compose
cp .env.example .env # set AUTH_TOKEN before production use
docker compose -f deployment/docker-compose.yml up --build
Expose:
- Frontend:
http://localhost:3000 - API:
http://localhost:8000 - Neo4j Browser:
http://localhost:7474
Testing
# lint & type-check
backend/.venv/bin/ruff check backend
backend/.venv/bin/mypy backend
# run pytest with coverage
NEO4J_URI=bolt://localhost:7687 \
NEO4J_USER=neo4j \
NEO4J_PASSWORD=password123 \
AUTH_TOKEN=test-token \
backend/.venv/bin/pytest backend/tests --cov=backend/mcp_server --cov=backend/agent_integration --cov-report=term-missing --cov-fail-under=80
# frontend lint + build
cd frontend
npm run lint
npm run build
A ready-made smoke test hits key endpoints:
scripts/smoke_test.py --base-url http://localhost:8000
MCP & Agent Integration
- MCP server mounted at
/mcpusing FastMCP streamable HTTP transport. backend/agent_integration/client.pyprovidesAgentDiscoveryfor listing/invoking tools and anOpenAIAgentBridgeto register the server with OpenAI Agents.
Example usage:
from backend.agent_integration.client import AgentDiscovery
import asyncio
async def main():
discovery = AgentDiscovery("http://localhost:8000", auth_token="change-me")
print(await discovery.list_tools())
asyncio.run(main())
Security Highlights
- Bearer token auth on all mutating endpoints
- SlowAPI rate limiting (default 10 req/s per IP)
- Request size checks and security headers (
CSP,X-Frame-Options, etc.) - Non-root Docker images with capabilities dropped
Detailed guidance in docs/SECURITY.md.
Configuration
See .env.example for required variables:
NEO4J_URI=bolt://neo4j:7687
NEO4J_USER=neo4j
NEO4J_PASSWORD=password123
NEO4J_DATABASE=neo4j
ALLOWED_ORIGINS=http://localhost:3000
AUTH_TOKEN=change-me
RATE_LIMIT_RPS=10
Documentation
Release Packaging
Create an archive for distribution:
zip -r Ultimate_MCP-release.zip \
backend frontend deployment docs scripts \
pyproject.toml README.md .env.example
License
MIT License © 2025 Ultimate MCP maintainers.
Ultimate_MCP
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。