Unbundle OpenAPI Specs MCP
Unbundle OpenAPI Specs MCP
README
Unbundle OpenAPI MCP Server
This project provides a Model Context Protocol (MCP) server with tools to split OpenAPI specification files into multiple files or extract specific endpoints into a new file. It allows an MCP client (like an AI assistant) to manipulate OpenAPI specifications programmatically.
Prerequisites
- Node.js (LTS version recommended, e.g., v18 or v20)
- npm (comes with Node.js)
Usage
The easiest way to use this server is via npx, which ensures you are always using the latest version without needing a global installation.
npx @auto-browse/unbundle-openapi-mcp@latest
Alternatively, you can install it globally (not generally recommended):
npm install -g @auto-browse/unbundle-openapi-mcp
# Then run using: unbundle-openapi-mcp
The server will start and listen for MCP requests on standard input/output (stdio).
Client Configuration
To use this server with MCP clients like VS Code, Cline, Cursor, or Claude Desktop, add its configuration to the respective settings file. The recommended approach uses npx.
VS Code / Cline / Cursor
Add the following to your User settings.json (accessible via Ctrl+Shift+P > Preferences: Open User Settings (JSON)) or to a .vscode/mcp.json file in your workspace root.
// In settings.json:
"mcp.servers": {
"unbundle_openapi": { // You can choose any key name
"command": "npx",
"args": [
"@auto-browse/unbundle-openapi-mcp@latest"
]
}
// ... other servers can be added here
},
// Or in .vscode/mcp.json (omit the top-level "mcp.servers"):
{
"unbundle_openapi": { // You can choose any key name
"command": "npx",
"args": [
"@auto-browse/unbundle-openapi-mcp@latest"
]
}
// ... other servers can be added here
}
Claude Desktop
Add the following to your claude_desktop_config.json file.
{
"mcpServers": {
"unbundle_openapi": {
// You can choose any key name
"command": "npx",
"args": ["@auto-browse/unbundle-openapi-mcp@latest"]
}
// ... other servers can be added here
}
}
After adding the configuration, restart your client application for the changes to take effect.
MCP Tools Provided
split_openapi
Description: Executes the redocly split command to unbundle an OpenAPI definition file into multiple smaller files based on its structure.
Arguments:
apiPath(string, required): The absolute path to the input OpenAPI definition file (e.g.,openapi.yaml).outputDir(string, required): The absolute path to the directory where the split output files should be saved. This directory will be created if it doesn't exist.
Returns:
- On success: A text message containing the standard output from the
redocly splitcommand (usually a confirmation message). - On failure: An error message containing the standard error or exception details from the command execution, marked with
isError: true.
Example Usage (Conceptual MCP Request):
{
"tool_name": "split_openapi",
"arguments": {
"apiPath": "/path/to/your/openapi.yaml",
"outputDir": "/path/to/output/directory"
}
}
extract_openapi_endpoints
Description: Extracts specific endpoints from a large OpenAPI definition file and creates a new, smaller OpenAPI file containing only those endpoints and their referenced components. It achieves this by splitting the original file, modifying the structure to keep only specified paths, and then bundling the result.
Arguments:
inputApiPath(string, required): The absolute path to the large input OpenAPI definition file.endpointsToKeep(array of strings, required): A list of the exact endpoint paths (strings) to include in the final output (e.g.,["/api", "/api/projects/{id}{.format}"]). Paths not found in the original spec will be ignored.outputApiPath(string, required): The absolute path where the final, smaller bundled OpenAPI file should be saved. The directory will be created if it doesn't exist.
Returns:
- On success: A text message indicating the path of the created file and the standard output from the
redocly bundlecommand. - On failure: An error message containing details about the step that failed (split, modify, bundle), marked with
isError: true.
Example Usage (Conceptual MCP Request):
{
"tool_name": "extract_openapi_endpoints",
"arguments": {
"inputApiPath": "/path/to/large-openapi.yaml",
"endpointsToKeep": ["/users", "/users/{userId}/profile"],
"outputApiPath": "/path/to/extracted-openapi.yaml"
}
}
Note: This server uses npx @redocly/cli@latest internally to execute the underlying split and bundle commands. An internet connection might be required for npx to fetch @redocly/cli if it's not cached. Temporary files are created during the extract_openapi_endpoints process and automatically cleaned up.
Development
If you want to contribute or run the server from source:
- Clone: Clone this repository.
- Navigate:
cd unbundle_openapi_mcp - Install Dependencies:
npm install - Build:
npm run build(compiles TypeScript todist/) - Run:
npm start(starts the server using the compiled code indist/)
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。