UNHCR Chart Generation MCP Server
Enables AI agents to generate UNHCR-styled data visualizations including bar, line, pie, and scatter charts with refugee and population data, returning charts as base64-encoded images.
README
UNHCR Chart Generation MCP Server
This MCP (Model Context Protocol) server in smithery.ai provides tools for generating UNHCR charts using the FastAPI chart generation service. It allows AI agents to create various types of charts (bar, line, pie, etc.) with UNHCR data visualization.
This server interacts with the UNHCR Chart Generation API.
Features
- Generate various types of charts (bar, line, pie, scatter) with UNHCR data
- Create population trend charts for refugee data
- Generate comparison charts with multiple datasets
- Customize chart titles, labels, and styling
- Return charts as base64-encoded images for easy integration
Connect to MCP Server
To access the server, open your web browser and visit the following URL: https://smithery.ai/server/@rvibek/mcp_unhcrpyplot
Configure the MCP host/client as needed.
API Endpoint
The server generates charts using the following API endpoint:
https://unhcrpyplot.rvibek.com.np/plot
The API accepts JSON payloads with the following structure:
{
"chart_type": "string",
"title": "string",
"subtitle": "string",
"x_label": "string",
"y_label": "string",
"data": {
"labels": ["string"],
"values": [number]
}
}
MCP Tools
The server exposes the following tools:
generate_unhcr_graph
Generate a UNHCR chart using the FastAPI chart generation service.
Parameters:
chart_type(required): Type of chart to generate (bar, line, pie, scatter, etc.)title(required): Main title of the chartsubtitle(required): Subtitle describing the chart contentx_label(required): Label for the x-axisy_label(required): Label for the y-axislabels(required): List of labels for the data points (e.g., years, countries)values(required): List of numerical values corresponding to the labels
Returns:
- Dictionary containing the chart image as base64 and metadata
generate_comparison_chart
Generate a comparison chart with multiple datasets.
Parameters:
chart_type(required): Type of chart (bar, line, etc.)title(required): Main title of the chartsubtitle(required): Subtitle describing the chart contentx_label(required): Label for the x-axisy_label(required): Label for the y-axisdatasets(required): List of datasets, each containing 'label', 'labels', and 'values'
Returns:
- Dictionary containing the chart image as base64 and metadata
generate_population_trend_chart
Generate a population trend chart for UNHCR data.
Parameters:
years(required): List of years for the x-axispopulation_counts(required): List of population counts for each yearcountry_name(optional): Name of the country or region being visualized (default: "Country")chart_type(optional): Type of chart (line, bar, etc.) (default: "line")
Returns:
- Dictionary containing the chart image as base64 and metadata
Example Usage
Here's an example of how to use the generate_unhcr_graph tool:
# Generate a bar chart showing refugee population trends
result = generate_unhcr_graph(
chart_type="bar",
title="Nepali Refugees and Asylum Seekers in Canada (2020-2021)",
subtitle="UNHCR Population Data",
x_label="Year",
y_label="Number of People",
labels=["2020", "2021"],
values=[205, 114]
)
Response Format
Successful chart generation returns:
{
"status": "success",
"chart_type": "bar",
"title": "Chart Title",
"image_base64": "base64_encoded_image_string",
"image_format": "png",
"message": "Successfully generated bar chart: Chart Title"
}
License
MIT
Acknowledgments
This project uses the UNHCR Chart Generation API for creating visualizations of UNHCR data.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。