Unified Docs Hub

Unified Docs Hub

Provides AI assistants with searchable access to documentation from 170+ curated repositories and 1000+ popular GitHub projects across 20+ categories including trading, AI/ML, DevOps, and web development.

Category
访问服务器

README

Verified on MseeP

🚀 Unified Docs Hub - The Ultimate MCP Documentation Server

License: MIT Python 3.8+ MCP Server

Transform your AI assistant into a documentation powerhouse! Unified Docs Hub is an MCP (Model Context Protocol) server that creates a massive, searchable knowledge base from 170+ curated repositories and 1000+ auto-discovered GitHub projects.

🌟 Why Unified Docs Hub?

Ever wished your AI assistant had instant access to ALL the documentation it needs? This MCP server solves that by:

  • 📚 Massive Knowledge Base: 170+ hand-picked repositories + 1000+ auto-discovered popular projects
  • 🔍 Lightning-Fast Search: Full-text search across 11,000+ documentation files in milliseconds
  • 🤖 AI-Optimized: Perfect for Claude, ChatGPT, and other AI assistants using MCP
  • 📈 Self-Updating: Automated daily updates and weekly discovery of new repositories
  • 🎯 Specialized Coverage: Deep expertise in Trading/Finance, AI/ML, DevOps, and 20+ categories

🎬 Real-World Examples

Example 1: Building a Trading Bot

AI: "Show me how to build a crypto trading bot with backtesting"

You: unified_search(query="crypto trading bot backtesting", category="Trading & Finance")

Result: Instant access to documentation from:
- Freqtrade (advanced crypto trading bot)
- Backtrader (backtesting framework)
- CCXT (100+ exchange APIs)
- TA-Lib (200+ technical indicators)

Example 2: Learning Kubernetes

AI: "Explain Kubernetes deployment strategies"

You: unified_search(query="kubernetes deployment strategies", category="Cloud/DevOps")

Result: Documentation from:
- Official Kubernetes docs
- Helm charts best practices
- ArgoCD GitOps workflows
- Istio service mesh patterns

Example 3: Machine Learning Pipeline

AI: "Set up an MLOps pipeline with experiment tracking"

You: unified_search(query="mlops pipeline experiment tracking", category="MLOps")

Result: Comprehensive guides from:
- MLflow (experiment tracking)
- Kubeflow (distributed training)
- DVC (data versioning)
- Weights & Biases (visualization)

📊 What's Inside?

Knowledge Coverage

Category Repositories Highlights
Trading & Finance 64 repos Algorithmic trading, options, forex, HFT, portfolio optimization
AI/ML 20 repos LLMs, transformers, deep learning, NLP, computer vision
Cloud/DevOps 15 repos Kubernetes, Docker, Terraform, CI/CD, monitoring
Web Development 12 repos React, Vue, Next.js, full-stack frameworks
MLOps 6 repos ML lifecycle, experiment tracking, model deployment
Data Engineering 8 repos Apache Spark, Airflow, dbt, data pipelines
Observability 5 repos Prometheus, Grafana, OpenTelemetry, APM
Blockchain 5 repos Smart contracts, DeFi, Web3 development
20+ More Categories ... Security, databases, mobile, desktop, and more

Key Features

  • 🔥 Full-Text Search: SQLite FTS5 engine for sub-second searches across millions of lines
  • 📈 Quality Scoring: Curated repos ranked by documentation quality (1-10 scale)
  • 🏷️ Smart Categorization: Browse by technology area or programming language
  • 🔄 Auto-Discovery: Continuously finds new popular repositories (10k+ stars)
  • 💾 Efficient Storage: Deduplication and compression keep the database lean
  • 🛡️ Rate Limit Handling: Respects GitHub API limits with smart throttling

🚀 Quick Start

Prerequisites

  • Python 3.8 or higher
  • GitHub Personal Access Token (optional but recommended)
  • An MCP-compatible AI assistant (Claude Desktop, Continue.dev, etc.)

Installation

  1. Clone the repository
git clone https://github.com/yourusername/unified-docs-hub.git
cd unified-docs-hub
  1. Set up Python environment
python3 -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
pip install -r requirements.txt
  1. Configure your MCP client

For Claude Desktop, add to ~/Library/Application Support/Claude/claude_desktop_config.json:

{
  "mcpServers": {
    "unified-docs-hub": {
      "command": "/path/to/unified-docs-hub/venv/bin/python",
      "args": ["/path/to/unified-docs-hub/unified_docs_hub_server.py"],
      "env": {
        "GITHUB_TOKEN": "your-github-token-here"
      }
    }
  }
}
  1. Initial indexing (optional - the server will do this automatically)
# Index all curated repositories
python -c "import asyncio; from unified_docs_hub_server import index_repositories; asyncio.run(index_repositories('smart'))"

📋 Available MCP Tools

unified_search

Search across all documentation with powerful filters.

# Basic search
unified_search("react hooks tutorial")

# Advanced search with filters
unified_search(
    query="transformer architecture attention",
    category="AI/ML",
    min_stars=5000
)

# Trading-specific search
unified_search(
    query="options greeks volatility smile",
    category="Trading & Finance"
)

index_repositories

Control repository indexing and discovery.

# Smart mode: Index curated + discover popular (recommended)
index_repositories(mode="smart")

# Update all existing repos
index_repositories(mode="update")

# Discover new trending repos
index_repositories(mode="discover", min_stars=5000, count=50)

list_repositories

Browse indexed repositories.

# List all Trading & Finance repos
list_repositories(category="Trading & Finance")

# Show only curated high-quality repos
list_repositories(source="curated", limit=20)

get_repository_docs

Get all documentation for a specific repository.

# Get all Kubernetes docs
get_repository_docs("kubernetes/kubernetes")

# Get trading library docs
get_repository_docs("freqtrade/freqtrade")

get_statistics

View comprehensive database statistics.

get_statistics()
# Returns: Total repos, documents, categories, languages, API status

🤖 Automated Updates

The server includes automated indexing that keeps your knowledge base fresh:

Setup Automated Updates

# Run the setup script
./setup_automated_indexing.sh

# Or manually start the updater
python automated_index_updater.py --once  # Run once
python automated_index_updater.py          # Run continuously

Update Schedule

  • Daily: Updates all curated repositories (2 AM, 2 PM)
  • Weekly: Discovers new trending repositories
  • On-Demand: Manual updates via MCP tools

🏗️ Architecture

Core Components

unified-docs-hub/
├── unified_docs_hub_server.py  # Main MCP server
├── database.py                 # SQLite + FTS5 engine
├── github_client.py            # GitHub API integration
├── response_limiter.py         # HTTP/2 error prevention
├── repositories.yaml           # Curated repo list
├── automated_index_updater.py  # Auto-update system
└── unified_docs.db            # Documentation database

How It Works

  1. Curation: Hand-picked repositories in repositories.yaml with quality scores
  2. Discovery: Automatically finds popular repos (10k+ stars) via GitHub API
  3. Indexing: Downloads and indexes README, docs/, and documentation files
  4. Storage: SQLite with FTS5 for efficient full-text search
  5. Serving: FastMCP server provides tools for AI assistants
  6. Updates: Automated system keeps documentation current

🎯 Use Cases

For AI Developers

  • Instant access to ML framework documentation
  • Compare different approaches across libraries
  • Find code examples and best practices

For Traders & Quants

  • Complete algorithmic trading documentation
  • Options pricing models and strategies
  • Backtesting frameworks and market data APIs

For DevOps Engineers

  • Kubernetes patterns and anti-patterns
  • CI/CD pipeline examples
  • Infrastructure as Code templates

For Full-Stack Developers

  • Frontend framework comparisons
  • Backend architecture patterns
  • Database optimization techniques

🛠️ Customization

Adding Custom Repositories

Edit repositories.yaml:

curated_repositories:
  - repo: "owner/awesome-project"
    category: "Web Development"
    description: "An awesome web framework"
    quality_score: 9
    priority: high
    doc_paths:
      - "docs/"
      - "README.md"
    topics: ["web", "framework", "javascript"]

Creating Custom Categories

Add new categories to group related technologies:

  - repo: "quantum-computing/qiskit"
    category: "Quantum Computing"  # New category!
    description: "Quantum computing SDK"

📈 Expansion Reports

See our journey of building this massive knowledge base:

🤝 Contributing

We welcome contributions! Please see our Contributing Guide for details.

Ways to Contribute

  • Add high-quality repositories to repositories.yaml
  • Improve search algorithms
  • Add new MCP tools
  • Enhance documentation
  • Report bugs or request features

📝 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

  • Model Context Protocol for enabling AI-assistant integrations
  • All the amazing open-source projects indexed in our knowledge base
  • The GitHub API for making documentation discovery possible

📬 Contact

For questions, suggestions, or collaboration opportunities:

  • Open an issue on GitHub
  • Submit a pull request
  • Star the repository to show support!

Built with ❤️ for developers who want their AI assistants to know everything!

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选