UniProt MCP Server
Provides seamless access to UniProtKB protein database, enabling queries for protein entries, sequences, Gene Ontology annotations, full-text search, and ID mapping across 200+ database types.
README
UniProt MCP Server
<!-- mcp-name: io.github.josefdc/uniprot-mcp -->
A Model Context Protocol (MCP) server that provides seamless access to UniProtKB protein data. Query protein entries, sequences, Gene Ontology annotations, and perform ID mappings through a typed, resilient interface designed for LLM agents.
✨ Features
- 🔌 Dual Transport: Stdio for local development and Streamable HTTP for remote deployments
- 📊 Rich Data Access: Fetch complete protein entries with sequences, features, GO annotations, cross-references, and taxonomy
- 🔍 Advanced Search: Full-text search with filtering by review status, organism, keywords, and more
- 🔄 ID Mapping: Convert between 200+ database identifier types with progress tracking
- 🛡️ Production Ready: Automatic retries with exponential backoff, CORS support, Prometheus metrics
- 📝 Typed Responses: Structured Pydantic models ensure data consistency
- 🎯 MCP Primitives: Resources, tools, and prompts designed for agent workflows
🚀 Quick Start
Installation
pip install uniprot-mcp
Run the Server
Local development (stdio):
uniprot-mcp
Remote deployment (HTTP):
uniprot-mcp-http --host 0.0.0.0 --port 8000
The HTTP server provides:
- MCP endpoint:
http://localhost:8000/mcp - Health check:
http://localhost:8000/healthz - Metrics:
http://localhost:8000/metrics(Prometheus format)
Test with MCP Inspector
npx @modelcontextprotocol/inspector uniprot-mcp
📚 MCP Primitives
Resources
Access static or dynamic data through URI patterns:
| URI | Description |
|---|---|
uniprot://uniprotkb/{accession} |
Raw UniProtKB entry JSON for any accession |
uniprot://help/search |
Documentation for search query syntax |
Tools
Execute actions and retrieve typed data:
| Tool | Parameters | Returns | Description |
|---|---|---|---|
fetch_entry |
accession, fields? |
Entry |
Fetch complete protein entry with all annotations |
get_sequence |
accession |
Sequence |
Get protein sequence with length and metadata |
search_uniprot |
query, size, reviewed_only, fields?, sort?, include_isoform |
SearchHit[] |
Full-text search with advanced filtering |
map_ids |
from_db, to_db, ids |
MappingResult |
Convert identifiers between 200+ databases |
fetch_entry_flatfile |
accession, version, format |
string |
Retrieve historical entry versions (txt/fasta) |
Progress tracking: map_ids reports progress (0.0 → 1.0) for long-running jobs.
Prompts
Pre-built templates for common workflows:
- Summarize Protein: Generate a structured summary from a UniProt accession, including organism, function, GO terms, and notable features.
🔧 Configuration
Environment Variables
| Variable | Default | Description |
|---|---|---|
UNIPROT_ENABLE_FIELDS |
unset | Request minimal field subsets to reduce payload size |
UNIPROT_LOG_LEVEL |
info |
Logging level: debug, info, warning, error |
UNIPROT_LOG_FORMAT |
plain |
Log format: plain or json |
UNIPROT_MAX_CONCURRENCY |
8 |
Max concurrent UniProt API requests |
MCP_HTTP_HOST |
0.0.0.0 |
HTTP server bind address |
MCP_HTTP_PORT |
8000 |
HTTP server port |
MCP_HTTP_LOG_LEVEL |
info |
Uvicorn log level |
MCP_HTTP_RELOAD |
0 |
Enable auto-reload: 1 or true |
MCP_CORS_ALLOW_ORIGINS |
* |
CORS allowed origins (comma-separated) |
MCP_CORS_ALLOW_METHODS |
GET,POST,DELETE |
CORS allowed methods |
MCP_CORS_ALLOW_HEADERS |
* |
CORS allowed headers |
CLI Flags
# HTTP server flags
uniprot-mcp-http --host 127.0.0.1 --port 9000 --log-level debug --reload
📖 Usage Examples
Fetching a Protein Entry
# Using MCP client
result = await session.call_tool("fetch_entry", {
"accession": "P12345"
})
# Returns structured Entry with:
# - primaryAccession, protein names, organism
# - sequence (length, mass, sequence string)
# - features (domains, modifications, variants)
# - GO annotations (biological process, molecular function, cellular component)
# - cross-references to other databases
Searching for Proteins
# Search reviewed human proteins
result = await session.call_tool("search_uniprot", {
"query": "kinase AND organism_id:9606",
"size": 50,
"reviewed_only": True,
"sort": "annotation_score"
})
# Returns list of SearchHit objects with accessions and scores
Mapping Identifiers
# Convert UniProt IDs to PDB structures
result = await session.call_tool("map_ids", {
"from_db": "UniProtKB_AC-ID",
"to_db": "PDB",
"ids": ["P12345", "Q9Y6K9"]
})
# Returns MappingResult with successful and failed mappings
🛠️ Development
Prerequisites
- Python 3.11 or 3.12
- uv (recommended) or pip
Setup
# Clone the repository
git clone https://github.com/josefdc/Uniprot-MCP.git
cd Uniprot-MCP
# Install dependencies
uv sync --group dev
# Install development tools
uv tool install ruff
uv tool install mypy
Running Tests
# Run all tests with coverage
uv run pytest --maxfail=1 --cov=uniprot_mcp --cov-report=term-missing
# Run specific test file
uv run pytest tests/unit/test_parsers.py -v
# Run integration tests only
uv run pytest tests/integration/ -v
Code Quality
# Lint
uv tool run ruff check .
# Format
uv tool run ruff format .
# Type check
uv tool run mypy src
# Run all checks
uv tool run ruff check . && \
uv tool run ruff format --check . && \
uv tool run mypy src && \
uv run pytest
Local Development Server
# Stdio server
uv run uniprot-mcp
# HTTP server with auto-reload
uv run python -m uvicorn uniprot_mcp.http_app:app --reload --host 127.0.0.1 --port 8000
🏗️ Architecture
src/uniprot_mcp/
├── adapters/ # UniProt REST API client and response parsers
│ ├── uniprot_client.py # HTTP client with retry logic
│ └── parsers.py # Transform UniProt JSON → Pydantic models
├── models/
│ └── domain.py # Typed data models (Entry, Sequence, etc.)
├── server.py # MCP stdio server (FastMCP)
├── http_app.py # MCP HTTP server (Starlette + CORS)
├── prompts.py # MCP prompt templates
└── obs.py # Observability (logging, metrics)
tests/
├── unit/ # Unit tests for parsers, models, tools
├── integration/ # End-to-end tests with VCR fixtures
└── fixtures/ # Test data (UniProt JSON responses)
📦 Publishing
This server is published to:
- PyPI: uniprot-mcp
- MCP Registry: io.github.josefdc/uniprot-mcp
Building and Publishing
# Build distribution packages
uv build
# Publish to PyPI (requires token)
uv publish --token pypi-YOUR_TOKEN
# Publish to MCP Registry (requires GitHub auth)
mcp-publisher login github
mcp-publisher publish
See docs/registry.md for detailed registry publishing instructions.
🤝 Contributing
Contributions are welcome! Please:
- Read our Contributing Guidelines
- Follow our Code of Conduct
- Check the Security Policy for vulnerability reporting
- Review the Changelog for recent changes
Quick start for contributors:
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Make your changes with tests
- Run quality checks:
uv tool run ruff check . && uv tool run mypy src && uv run pytest - Commit using Conventional Commits (
feat:,fix:,docs:, etc.) - Push and open a Pull Request
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- UniProt Consortium: For providing comprehensive, high-quality protein data through their REST API
- Anthropic: For the Model Context Protocol specification and Python SDK
- Community: For feedback, bug reports, and contributions
🔗 Links
- Documentation: GitHub Repository
- UniProt API: REST API Documentation
- MCP Specification: Model Context Protocol
- Issues & Support: GitHub Issues
⚠️ Disclaimer
This is an independent project and is not officially affiliated with or endorsed by the UniProt Consortium. Please review UniProt's terms of use when using their data.
Built with ❤️ for the bioinformatics and AI communities
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。