Unitree Go2 MCP Server
A server built on the Model Context Protocol that enables controlling the Unitree Go2 robot using natural language commands, which are translated into ROS2 instructions for the robot to perform corresponding actions.
Tools
get_topics
pub_wirelesscontroller
stand_up_from_a_fall
stretch
shake_hands
love
pounce
jump_forward
sit_down
greet
dance
stop
README
Unitree Go2 MCP Server
<center><img src="https://github.com/lpigeon/unitree-go2-mcp-server/blob/main/img/thumbnail.png" width="800"/></center>
The Unitree Go2 MCP Server is a server built on the Model Context Protocol (MCP) that enables users to control the Unitree Go2 robot using natural language commands interpreted by a Large Language Model (LLM). These commands are translated into ROS2 instructions, allowing the robot to perform corresponding actions.
Requirements
MCP Functions
You can find the list of functions in the MCPFUNCTIONS.md.
Installation
1. Setup unitree_ros2 environment
https://github.com/unitreerobotics/unitree_ros2
- You need to complete the setup up to
Step 2: Connect and testin the repository linked above.
2. Clone this repository
git clone https://github.com/lpigeon/unitree-go2-mcp-server.git
cd unitree-go2-mcp-server
3. uv Installation
- To install
uv, you can use the following command:
curl -LsSf https://astral.sh/uv/install.sh | sh
or
pip install uv
- Create virtual environment and activate it (Optional)
uv venv
source .venv/bin/activate
4. MCP Server Configuration
Set MCP setting to mcp.json.
Please keep in mind that the configuration must be done on the PC connected to the Go2.
{
"mcpServers": {
"unitree-go2-mcp-server": {
"command": "uv",
"args": [
"--directory",
"/ABSOLUTE/PATH/TO/PARENT/FOLDER/unitree-go2-mcp-server",
"run",
"server.py"
]
}
}
}
If you use Claude Desktop, you can find mcp.json using the following command:
- MacOS
code ~/Library/Application\ Support/Claude/claude_desktop_config.json
- Linux(Ubuntu)
You can install Claude Desktop to use claude-desktop-debian.
code ~/.config/Claude/claude_desktop_config.json
- Windows
code $env:AppData\Claude\claude_desktop_config.json
How To Use
1. Set UNITREE_ROS2_SETUP_SH_PATH.
- Open
server.pyand change yourUNITREE_ROS2_SETUP_SH_PATH(eg./home/lpigeon/unitree_ros2/setup.sh)
If you use rosbridge, you need Set IP and Port to connect rosbridge (Optional).
- Open
server.pyand change yourLOCAL_IP,ROSBRIDGE_IPandROSBRIDGE_PORT. (ROSBRIDGE_PORT's default value is9090)
2. Check the Go2 robot is connected to the network.
Type the following command in the terminal.
ros2 topic list
You should see the following topic:
/wirelesscontroller
If you don't see the topic, check the connection between the Go2 robot and the network.
3. Run any AI system that has imported unitree-go2-mcp-server.
4. Type "Make the Go2 robot move forward at a velocity of 0.5 m/s for 3 seconds.".
<center><img src="https://github.com/lpigeon/unitree-go2-mcp-server/blob/main/img/how_to_use_1.png" width="500"/></center>
5. Check the Go2 robot's movement.
<center><img src="https://github.com/lpigeon/unitree-go2-mcp-server/blob/main/img/how_to_use_2.gif" width="500"/></center>
6. Type what you want to do and Enjoy!
Contextual Understanding
When you type a command like "It looks like the Go2 is getting tired," the LLM interprets this contextually — understanding that the robot might need a break or some form of stretching!
<center><img src="https://github.com/lpigeon/unitree-go2-mcp-server/blob/main/img/contextual_understanding.gif" width="800"/></center>
Simple Task
This task is a comprehensive demo task showcasing the Unitree Go2 robot's obstacle avoidance, direction changing, and user interaction capabilities.
<center><img src="https://github.com/lpigeon/unitree-go2-mcp-server/blob/main/img/task_test.gif" width="800"/></center>
Contributing
Contributions are welcome!
Whether you're fixing a typo, adding a new function, or suggesting improvements, your help is appreciated.
Please follow the contributing guidelines for more details on how to contribute to this project.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。