Universal Menu

Universal Menu

Provides an interactive decision menu that surfaces contextual choices on every assistant turn, allowing users to navigate available actions through a React widget interface.

Category
访问服务器

README

Universal Menu (Apps SDK)

smithery badge

An interactive decision menu for ChatGPT Apps SDK connectors.
Surface contextual choices on every assistant turn—at the start of a reply, at the end, or both.
If your agent returns proposedItems, the widget renders them; otherwise, the server falls back to defaults (no OpenAI autogen).

Features

  • Encourages continuous choice-making by rendering a menu on every assistant message.
  • Works with pre-computed menus (proposedItems) or a lightweight default set.
  • Streamable HTTP transport compatible with Smithery and other MCP clients.
  • React widget packaged as an iframe resource (ui://widget/menu.html).

Requirements

  • Node.js 18+ (Node 20+ recommended)
  • Smithery account & API key (for smithery dev/build)
  • HTTPS endpoint when connecting from ChatGPT (ngrok, Cloudflare Tunnel, etc.)

Setup

npm install
cp .env.example .env    # optional: adjust PORT/DEFAULT_TITLE for local HTTP mode

Smithery Quickstart

The project mirrors the Smithery TypeScript quickstart so you can develop and deploy with the official CLI.

  1. Run the single build pipeline once (bundles the widget, embeds it, compiles TS, and produces the Smithery artifact):
    npm run build
    
  2. Start the widget watcher in a dedicated terminal whenever you iterate on web/src:
    npm run dev:web
    
    After iterating, re-run npm run build so the embedded bundle in src/generated stays in sync.
  3. In another terminal, run the MCP server through Smithery (requires SMITHERY_API_KEY):
    export SMITHERY_API_KEY=...   # or set via smithery login
    npm run dev                   # internally runs `smithery dev`
    
    This establishes an ngrok tunnel to the Smithery Playground. Prompt with “Use the Universal Menu connector and show next steps.”
  4. When you are ready to ship, run the same production build:
    npm run build
    
    Push the repo to GitHub, open https://smithery.ai/, and press Deploy to ship the server.

Local HTTP Server (without Smithery)

If you need to self-host or tunnel manually:

npm run build
npm start                       # runs Express+Streamable HTTP on PORT (default 2091)
# POST http://127.0.0.1:2091/mcp with Accept: application/json, text/event-stream

Installing via Smithery

To install Universal Menu automatically via Smithery:

npx -y @smithery/cli install @arhgap11b/appsdk-universal-menu

Widget Preview

npm run build
nohup python3 -m http.server 3333 --directory web >/tmp/menu.preview.log 2>&1 &
# open http://127.0.0.1:3333/preview.html

Stop the preview server with pkill -f "http.server 3333".
Sample screenshot: docs/menu-preview.png.

Quick Check with MCP Inspector

npx @modelcontextprotocol/inspector@latest
# connect to http://127.0.0.1:2091/mcp and invoke the get_menu tool

ChatGPT Developer Mode Setup

  1. Start a new chat → “+” near the composer → Developer mode.
  2. Add the MCP server via HTTPS URL pointing to /mcp (e.g. ngrok http 2091).
  3. Enable the connector and prompt the model to call get_menu at the start or end of each reply, e.g. “On every response, use the ‘Universal Menu’ connector to offer available next steps.”

Deployment Notes

  • Works on Fly.io, Render, Railway, Cloud Run, Azure Container Apps, or Kubernetes ingresses that support streaming responses.
  • For quick demos, ngrok http 2091 gives an HTTPS tunnel like https://<subdomain>.ngrok.app/mcp.

Architecture

  • Tool get_menu returns supplied items (or defaults) and should be invoked on every turn to keep options fresh.
  • Tool do_action handles a chosen option, performs follow-up logic, and returns an updated menu.
  • React widget (web/src/Menu.tsx) renders the actions, persists widget state, and uses MCP callbacks (callTool, sendFollowupMessage, etc.).

Environment Variables

  • PORT — HTTP port for npm start (default 2091)
  • DEFAULT_TITLE — fallback menu title when the caller does not specify one

Project Structure

appsdk-universal-menu/
├─ package.json
├─ smithery.yaml
├─ tsconfig.json
├─ src/
│  ├─ index.ts          # Smithery entry point (default export createServer)
│  ├─ server.ts         # Local Express transport for npm start
│  └─ menu/
│     └─ generator.ts
├─ web/
│  ├─ preview.html
│  └─ src/
│     ├─ index.tsx
│     └─ Menu.tsx
└─ docs/
   └─ menu-preview.png

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选