Universal SQL MCP Server
Enables secure interaction with multiple SQL database engines (MySQL, PostgreSQL, SQLite, SQL Server) through a standardized interface. Supports schema inspection, safe query execution, and controlled write operations with built-in security restrictions.
README
Universal SQL MCP Server
A Model Context Protocol (MCP) server that provides secure access to multiple SQL database engines. This server enables AI assistants and other MCP clients to interact with various SQL databases through a standardized interface.
Supported Databases
- MySQL - Full support with comprehensive schema information
- PostgreSQL - Full support with comprehensive schema information
- SQLite - Full support, perfect for local development and testing
- SQL Server - Full support with ODBC connectivity
Features
- Multi-Database Support: Works with MySQL, PostgreSQL, SQLite, and SQL Server
- Database Schema Inspection: Get comprehensive information about all tables, columns, indexes, and constraints
- Safe Query Execution: Execute SELECT queries with built-in security restrictions
- Controlled Write Operations: Execute INSERT and UPDATE operations with proper security controls
- Connection Testing: Verify database connectivity and configuration
- Environment-based Configuration: Secure configuration through environment variables
- Comprehensive Logging: Detailed logging for monitoring and debugging
- Database-Specific Optimizations: Tailored queries and features for each database engine
Tools Provided
1. get_database_schema
Retrieves comprehensive information about all tables in the database including:
- Table names and comments
- Column definitions with data types, constraints, and comments
- Index information (primary keys, unique indexes, regular indexes)
- Table statistics (estimated row count, storage size)
2. execute_sql_query
Executes SQL SELECT queries safely with the following restrictions:
- Only SELECT statements are allowed
- Dangerous keywords (DROP, DELETE, UPDATE, etc.) are blocked
- Returns results as structured data with metadata
3. execute_write_operation (Optional)
Executes SQL write operations (INSERT and UPDATE) safely with the following restrictions:
- Only INSERT and UPDATE statements are allowed
- DELETE, DROP, TRUNCATE, ALTER, CREATE operations are blocked
- Returns affected row count and last insert ID (for INSERT operations)
- Provides transaction safety with automatic commit
- Note: This tool is only available when
ENABLE_WRITE_OPERATIONS=trueis set in the configuration
4. test_database_connection
Tests the database connection to ensure proper configuration and connectivity.
Quick Start
Try the Demo (SQLite)
The fastest way to see the Universal SQL MCP Server in action:
# Clone the repository
git clone <repository-url>
cd gen-http-sql-mcp
# Install dependencies
pip install fastmcp mysql-connector-python psycopg2-binary pyodbc sqlalchemy python-dotenv
# Run the demo (creates a SQLite database with sample data)
python demo.py
# Start the MCP server
python main.py
The demo creates a SQLite database with sample users and orders, then demonstrates all MCP tools.
Installation
- Clone this repository:
git clone <repository-url>
cd gen-http-sql-mcp
- Install dependencies:
# Using pip
pip install fastmcp mysql-connector-python psycopg2-binary pyodbc sqlalchemy python-dotenv
# Or using uv
uv sync
- Optional: Install database-specific drivers only if needed:
# For MySQL only
pip install fastmcp mysql-connector-python python-dotenv
# For PostgreSQL only
pip install fastmcp psycopg2-binary python-dotenv
# For SQLite only (no additional drivers needed)
pip install fastmcp python-dotenv
# For SQL Server only
pip install fastmcp pyodbc python-dotenv
Configuration
- Copy the example environment file:
cp .env.example .env
- Edit the
.envfile with your database credentials:
MySQL Configuration
DB_TYPE=mysql
DB_HOST=localhost
DB_PORT=3306
DB_USER=your_username
DB_PASSWORD=your_password
DB_NAME=your_database
PostgreSQL Configuration
DB_TYPE=postgresql
DB_HOST=localhost
DB_PORT=5432
DB_USER=your_username
DB_PASSWORD=your_password
DB_NAME=your_database
SQLite Configuration
DB_TYPE=sqlite
DB_NAME=/path/to/your/database.db
# Note: SQLite doesn't require host, port, user, or password
SQL Server Configuration
DB_TYPE=sqlserver
DB_HOST=localhost
DB_PORT=1433
DB_USER=your_username
DB_PASSWORD=your_password
DB_NAME=your_database
DB_DRIVER=ODBC Driver 17 for SQL Server
Common Optional Settings
# Optional: Connection pool settings (not applicable for SQLite)
DB_POOL_SIZE=5
DB_MAX_OVERFLOW=10
# Optional: Connection timeout settings (in seconds)
DB_CONNECT_TIMEOUT=10
DB_READ_TIMEOUT=30
DB_WRITE_TIMEOUT=30
# Optional: Enable write operations (INSERT/UPDATE) - set to true to enable
ENABLE_WRITE_OPERATIONS=false
Configuration Options
-
DB_TYPE: Specifies the database engine to use
mysql: MySQL database (requires mysql-connector-python)postgresql: PostgreSQL database (requires psycopg2-binary)sqlite: SQLite database (built-in Python support)sqlserver: SQL Server database (requires pyodbc)
-
ENABLE_WRITE_OPERATIONS: Controls whether the
execute_write_operationtool is availablefalse(default): Only read-only operations are allowed (SELECT queries only)true: Enables INSERT and UPDATE operations through theexecute_write_operationtool- For security reasons, DELETE, DROP, TRUNCATE, ALTER, and CREATE operations are always blocked
-
Request Logging Configuration:
- ENABLE_REQUEST_LOGGING: Enable basic request logging (
trueby default) - ENABLE_DETAILED_REQUEST_LOGGING: Enable detailed request logging with headers and payloads (
falseby default) - REQUEST_LOG_LEVEL: Log level for request logging (
INFOby default) - MAX_PAYLOAD_LOG_LENGTH: Maximum length of logged payloads (
2000by default) - LOG_LEVEL: General application log level (
INFOby default)
- ENABLE_REQUEST_LOGGING: Enable basic request logging (
Database-Specific Notes
- SQLite: Only requires
DB_NAME(file path). Connection pooling settings are ignored. - SQL Server: May require additional ODBC driver installation and
DB_DRIVERspecification. - PostgreSQL: Uses
psycopg2-binaryfor optimal performance and compatibility. - MySQL: Uses the official
mysql-connector-pythondriver.
Usage
Running the Server
Start the MCP server:
uv run python main.py
The server will:
- Load configuration from environment variables
- Test the database connection
- Start the MCP server and listen for requests
Using with MCP Clients
This server implements the Model Context Protocol and can be used with any MCP-compatible client. The server provides three tools that can be called by MCP clients.
Example Tool Calls
- Get Database Schema:
{
"method": "tools/call",
"params": {
"name": "get_database_schema"
}
}
- Execute SQL Query (works with all database types):
{
"method": "tools/call",
"params": {
"name": "execute_sql_query",
"arguments": {
"sql_query": "SELECT * FROM users LIMIT 10"
}
}
}
- Execute Write Operation (works with all database types):
{
"method": "tools/call",
"params": {
"name": "execute_write_operation",
"arguments": {
"sql_query": "INSERT INTO users (name, email) VALUES ('John Doe', 'john@example.com')"
}
}
}
Database-Specific Query Examples
PostgreSQL with RETURNING clause:
INSERT INTO users (name, email) VALUES ('Jane Doe', 'jane@example.com') RETURNING id;
SQLite with autoincrement:
INSERT INTO users (name, email) VALUES ('Bob Smith', 'bob@example.com');
SQL Server with OUTPUT clause:
INSERT INTO users (name, email) OUTPUT INSERTED.id VALUES ('Alice Johnson', 'alice@example.com');
- Test Connection:
{
"method": "tools/call",
"params": {
"name": "test_database_connection"
}
}
Security Features
- Controlled Write Access: Only INSERT and UPDATE operations are permitted for write operations
- Read Access: SELECT queries are available through dedicated tool
- Query Validation: Dangerous SQL keywords (DELETE, DROP, TRUNCATE, etc.) are blocked
- Operation Separation: Read and write operations are handled by separate tools
- Environment Variables: Sensitive configuration is stored in environment variables
- Connection Management: Proper connection handling with timeouts and cleanup
- Transaction Safety: Write operations include automatic commit and error handling
Project Structure
gen-http-sql-mcp/
├── main.py # Main server entry point
├── database.py # Universal database connection and management
├── tools.py # MCP tools implementation
├── .env.example # Environment configuration template
├── pyproject.toml # Project dependencies and metadata
└── README.md # This file
Database Engine Support Details
MySQL
- Full schema introspection with table comments, column details, and index information
- Supports connection pooling and timeout configurations
- Uses
mysql-connector-pythonfor optimal compatibility
PostgreSQL
- Comprehensive schema information including table and column comments
- Advanced index information and constraint details
- Uses
psycopg2-binaryfor high performance
SQLite
- Complete table and column information
- Index details and primary key information
- Perfect for development, testing, and lightweight applications
- No additional driver installation required
SQL Server
- Full table and column schema information
- Supports both Windows and SQL Server authentication
- Uses ODBC connectivity via
pyodbc - Configurable ODBC driver selection
Dependencies
- fastmcp: FastMCP framework for building MCP servers
- mysql-connector-python: Official MySQL driver for Python
- psycopg2-binary: PostgreSQL adapter for Python
- pyodbc: ODBC database connectivity for SQL Server
- sqlalchemy: SQL toolkit and Object-Relational Mapping library
- python-dotenv: Environment variable loading
- sqlite3: Built-in Python SQLite support (no additional installation needed)
Error Handling
The server includes comprehensive error handling:
- Database connection errors are logged and reported
- Invalid SQL queries are rejected with clear error messages
- Configuration validation ensures required parameters are present
- Graceful shutdown on interruption
Logging
The server provides comprehensive logging capabilities:
Basic Logging
- Connection status and database information
- Query execution results and performance
- Error messages with context
- Server startup and shutdown events
Request Logging
The server includes advanced request logging middleware to help debug client connection issues:
Simple Request Logging (Default)
# Enabled by default, shows basic request information
ENABLE_REQUEST_LOGGING=true
Detailed Request Logging (Debug Mode)
# Enable detailed logging with headers and payloads
ENABLE_DETAILED_REQUEST_LOGGING=true
REQUEST_LOG_LEVEL=DEBUG
MAX_PAYLOAD_LOG_LENGTH=5000
LOG_LEVEL=DEBUG
Docker Debug Environment
For debugging client connection issues, use the debug environment:
# Start debug environment with detailed logging
make debug
# View debug logs
make logs-debug
# View only MCP server debug logs
make logs-debug-mcp
The debug environment enables:
- Detailed request/response logging
- HTTP headers logging
- Request payload logging
- Response payload logging
- Execution timing
- Client information tracking
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Support
For issues and questions:
- Check the logs for error messages
- Verify your database configuration
- Ensure your database server is accessible
- Create an issue in the repository
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。