
User Management MCP Server
A Model Context Protocol server demonstrating user management capabilities with tools for creating, retrieving, and generating random user data.
README
Model Context Protocol (MCP) Learning Notes
Video Reference
- Source: Web Dev Simplified YouTube Video
- Credits: Web Dev Simplified (YouTube channel)
What is MCP?
Model Context Protocol (MCP) is a protocol that defines how a client (such as an LLM) can communicate and use tools and resources defined at the server level. It implements a client-server architecture with the following components:
- Tools
- Resources
- Prompts
- Samplings
Documentation & Resources
- Official documentation: modelcontextprotocol.io/introduction
- Includes starter projects in multiple languages for MCP client and server implementation
Implementation Details
Server Setup
The src/server.ts
file contains the code for creating an MCP server and defining tools, resources, and prompts.
Testing the Implementation
- Build the server:
npm run server:build
- Add to VS Code using the "Add MCP server" command
- Access server functionality in the Copilot chat UI
- Use "#" followed by tool name to access implemented tools
Client Implementation
Note: to use the query and prompts from the client you will need a gemini ai api key, you can add this in the .env file
The src/client.ts
file provides a CLI client for interacting with the MCP server. It connects to the server, lists available tools, resources, and prompts, and allows you to:
- Query the LLM directly
- Run tools (with parameter input)
- Access resources (with dynamic URI parameters)
- Use prompts (with argument input)
How it works
- Connects to the MCP server using a transport layer.
- Fetches available tools, resources, prompts, and resource templates.
- Presents a menu for the user to select an action: Query, Tools, Resources, or Prompts.
- Handles each action:
- Query: Sends a prompt to the LLM and optionally invokes tools.
- Tools: Lets you select and run a tool, entering parameters as needed.
- Resources: Lets you select a resource or template, entering URI parameters if required, and displays the result.
- Prompts: Lets you select a prompt, enter arguments, and view the generated output.
- For prompts, you can choose to run the generated text through the LLM for further results.
Example Usage
When you run the client, you'll see a menu:
What would you like to do
❯ Query
Tools
Resources
Prompts
Selecting an option will guide you through the available features interactively.
Resources
- users: Retrieves all users from the JSON file
- user-details: Retrieves user details by ID
Tools
- create-user: Creates a new user with the following parameters:
- username
- address
- age
- phone number
- create-random-user: Generates and creates a random user
Prompts
- generate-fake-user: Prompt with fixed fields for generating fake user data
Sampling
- create-random-user: This uses sampling i.e. calling requests on the LLM or clientto generate something.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。