
V2.ai Insights Scraper MCP
A Model Context Protocol server that scrapes blog posts from V2.ai Insights, extracts content, and provides AI-powered summaries using OpenAI's GPT-4.
README
V2.ai Insights Scraper MCP
A Model Context Protocol (MCP) server that scrapes blog posts from V2.ai Insights, extracts content, and provides AI-powered summaries using OpenAI's GPT-4. Currently supports Contentful CMS integration with search capabilities.
📋 Strategic Vision: This project is evolving into a comprehensive AI intelligence platform. See STRATEGIC_VISION.md for the complete roadmap from content API to strategic intelligence platform.
Features
- 🔍 Multi-Source Content: Fetches from Contentful CMS and V2.ai web scraping
- 📝 Content Extraction: Extracts title, date, author, and content with intelligent fallbacks
- 🔎 Full-Text Search: Search across all blog content with Contentful's search API
- 🤖 AI Summarization: Generates summaries using OpenAI GPT-4
- 🔧 MCP Integration: Exposes tools for Claude Desktop integration
Tools Available
get_latest_posts()
- Retrieves blog posts with metadata (Contentful + V2.ai fallback)get_contentful_posts(limit)
- Fetch posts directly from Contentful CMSsearch_blogs(query, limit)
- NEW - Search across all blog contentsummarize_post(index)
- Returns AI-generated summary of a specific postget_post_content(index)
- Returns full content of a specific post
Setup
Prerequisites
- Python 3.12+
- uv package manager
- OpenAI API key
- Contentful CMS credentials (optional, for enhanced functionality)
Installation
-
Clone and navigate to project:
cd v2-ai-mcp
-
Install dependencies:
uv add fastmcp beautifulsoup4 requests openai
-
Set up environment variables:
Create a
.env
file based on.env.example
:cp .env.example .env
Edit
.env
with your credentials:# Required OPENAI_API_KEY=your-openai-api-key-here # Optional (for Contentful integration) CONTENTFUL_SPACE_ID=your-contentful-space-id CONTENTFUL_ACCESS_TOKEN=your-contentful-access-token CONTENTFUL_CONTENT_TYPE=pageBlogPost
Running the Server
uv run python -m src.v2_ai_mcp.main
The server will start and be available for MCP connections.
Testing the Scraper
Test individual components:
# Test scraper
uv run python -c "from src.v2_ai_mcp.scraper import fetch_blog_posts; print(fetch_blog_posts()[0]['title'])"
# Test with summarizer (requires OpenAI API key)
uv run python -c "from src.v2_ai_mcp.scraper import fetch_blog_posts; from src.v2_ai_mcp.summarizer import summarize; post = fetch_blog_posts()[0]; print(summarize(post['content'][:1000]))"
# Run unit tests
uv run pytest tests/ -v --cov=src
Claude Desktop Integration
Configuration
-
Install Claude Desktop (if not already installed)
-
Configure MCP in Claude Desktop:
Add to your Claude Desktop MCP configuration:
{ "mcpServers": { "v2-insights-scraper": { "command": "/path/to/uv", "args": ["run", "--directory", "/path/to/your/v2-ai-mcp", "python", "-m", "src.v2_ai_mcp.main"], "env": { "OPENAI_API_KEY": "your-api-key-here", "CONTENTFUL_SPACE_ID": "your-contentful-space-id", "CONTENTFUL_ACCESS_TOKEN": "your-contentful-access-token", "CONTENTFUL_CONTENT_TYPE": "pageBlogPost" } } } }
-
Restart Claude Desktop to load the MCP server
Using the Tools
Once configured, you can use these tools in Claude Desktop:
- Get latest posts:
get_latest_posts()
(intelligent Contentful + V2.ai fallback) - Get Contentful posts:
get_contentful_posts(10)
(direct CMS access) - Search blogs:
search_blogs("AI automation", 5)
(NEW - full-text search) - Summarize post:
summarize_post(0)
(index 0 for first post) - Get full content:
get_post_content(0)
Example Usage
🔍 Search for AI-related content:
search_blogs("artificial intelligence", 3)
📚 Get latest posts with automatic source selection:
get_latest_posts()
🤖 Get AI summary of specific post:
summarize_post(0)
Project Structure
v2-ai-mcp/
├── src/
│ └── v2_ai_mcp/
│ ├── __init__.py # Package initialization
│ ├── main.py # FastMCP server with tool definitions
│ ├── scraper.py # Web scraping logic
│ └── summarizer.py # OpenAI GPT-4 integration
├── tests/
│ ├── __init__.py # Test package initialization
│ ├── test_scraper.py # Unit tests for scraper
│ └── test_summarizer.py # Unit tests for summarizer
├── .github/
│ └── workflows/
│ └── ci.yml # GitHub Actions CI/CD pipeline
├── pyproject.toml # Project dependencies and config
├── .env.example # Environment variables template
├── .gitignore # Git ignore patterns
└── README.md # This file
Current Implementation
The scraper currently targets this specific blog post:
- URL:
https://www.v2.ai/insights/adopting-AI-assistants-while-balancing-risks
Extracted Data
- Title: "Adopting AI Assistants while Balancing Risks"
- Author: "Ashley Rodan"
- Date: "July 3, 2025"
- Content: ~12,785 characters of main content
Development
Adding More Blog Posts
To scrape multiple posts or different URLs, modify the fetch_blog_posts()
function in scraper.py
:
def fetch_blog_posts() -> list:
urls = [
"https://www.v2.ai/insights/post1",
"https://www.v2.ai/insights/post2",
# Add more URLs
]
return [fetch_blog_post(url) for url in urls]
Improving Content Extraction
The scraper uses multiple fallback strategies for extracting content. You can enhance it by:
- Inspecting V2.ai's HTML structure
- Adding more specific CSS selectors
- Improving date/author extraction patterns
Troubleshooting
Common Issues
- OpenAI API Key Error: Ensure your API key is set in environment variables
- Import Errors: Run
uv sync
to ensure all dependencies are installed - Scraping Issues: Check if the target URL is accessible and the HTML structure hasn't changed
Testing Components
# Test scraper only
uv run python -c "from src.v2_ai_mcp.scraper import fetch_blog_posts; posts = fetch_blog_posts(); print(f'Found {len(posts)} posts')"
# Run full test suite
uv run pytest tests/ -v --cov=src
# Test MCP server startup
uv run python -m src.v2_ai_mcp.main
Development
Running Tests
# Run all tests
uv run pytest
# Run with coverage
uv run pytest --cov=src --cov-report=html
# Run specific test file
uv run pytest tests/test_scraper.py -v
Code Quality
# Format code
uv run ruff format src tests
# Lint code
uv run ruff check src tests
# Fix auto-fixable issues
uv run ruff check --fix src tests
License
This project is for educational and development purposes.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。