vap-mcp-server

vap-mcp-server

Execution control layer for AI agents - Reserve, execute, burn/refund pattern for media generation

Category
访问服务器

README

VAP – Execution Control Layer for AI Agents

"VAP is where nondeterminism stops."

MCP Registry Version Python License


The Problem

If your agents call paid APIs directly, you don't have:

  • Cost control – No budget limits, no spending caps
  • Retry limits – Failed calls can loop indefinitely
  • Failure ownership – No clear accountability when things go wrong

Your AI agent needs to generate an image. It calls DALL-E. The call fails. It retries. Fails again. Retries 10 more times.

You just burned $5 on nothing.


The Solution

VAP is an Execution Control Layer that sits between AI agents and paid external APIs.

It enforces:

  • Pre-commit pricing – Know exact cost before execution
  • Hard budget guarantees – Reserve → Burn → Refund model
  • Deterministic retry behavior – No runaway costs
  • Explicit execution ownership – Every task has an owner

How It Works

Agent: "Generate an image of a sunset"
    ↓
VAP: "That will cost $0.18. Reserving..."
VAP: "Reserved. Executing..."
VAP: "Success. Burning $0.18. Here's your image."

If it fails:

Agent: "Generate an image of a sunset"
    ↓
VAP: "That will cost $0.18. Reserving..."
VAP: "Reserved. Executing..."
VAP: "Failed. Refunding $0.18. Error: Provider timeout"

Your agent never sees the complexity. It just gets deterministic results.


Pricing

Type Preset Price
Image image.basic $0.18
Video video.basic $1.96
Music music.basic $0.68
Campaign streaming_campaign $5.90
Full Production full_production $7.90

No surprises. No variable pricing. No "it depends."


MCP Integration

VAP is on the official MCP Registry: io.github.elestirelbilinc-sketch/vap-e

Claude Desktop Configuration

{
  "mcpServers": {
    "vap": {
      "url": "https://api.vapagent.com/mcp",
      "transport": "streamable-http"
    }
  }
}

Available Tools (10)

Tool Description
generate_image Generate AI image ($0.18)
generate_video Generate AI video ($1.96)
generate_music Generate AI music ($0.68)
estimate_cost Get image generation cost
estimate_video_cost Get video generation cost
estimate_music_cost Get music generation cost
check_balance Check account balance
get_task Get task status by ID
list_tasks List recent tasks
execute_preset Execute named preset

SDK Usage

Installation

pip install vape-client

Basic Usage

from vape_client import VAPClient

client = VAPClient(api_key="your_api_key")

# Cost is pre-committed: $0.18
result = client.generate_image(
    prompt="A serene mountain landscape at sunset"
)

print(f"Image URL: {result.url}")
print(f"Cost: ${result.cost}")

Async Usage

import asyncio
from vape_client import AsyncVAPClient

async def main():
    client = AsyncVAPClient(api_key="your_api_key")

    # Budget enforced, retries limited
    result = await client.generate_image(
        prompt="A futuristic cityscape"
    )
    print(f"Image URL: {result.url}")

asyncio.run(main())

API Endpoints

Endpoint Method Description
/v3/generate POST Create media execution task
/v3/tasks/{id} GET Retrieve task status
/v3/tasks/{id}/result GET Retrieve task result
/v3/balance GET Check account balance

Full API Docs: api.vapagent.com/docs


The Three Guarantees

1. Pre-Commit Pricing

Every task has a known cost before execution. No surprises.

2. Budget Enforcement

Set a max budget. VAP enforces it. Hit the limit? Task rejected. Balance protected.

3. Failure Ownership

Every task has an explicit owner. Every failure has an address. No more "the agent did something and I don't know what."


Links


License

MIT License – see the LICENSE file for details.


VAP – Execution Control Layer for AI Agents

"VAP is where nondeterminism stops."

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选