vap-mcp-server
Execution control layer for AI agents - Reserve, execute, burn/refund pattern for media generation
README
VAP – Execution Control Layer for AI Agents
"VAP is where nondeterminism stops."
The Problem
If your agents call paid APIs directly, you don't have:
- Cost control – No budget limits, no spending caps
- Retry limits – Failed calls can loop indefinitely
- Failure ownership – No clear accountability when things go wrong
Your AI agent needs to generate an image. It calls DALL-E. The call fails. It retries. Fails again. Retries 10 more times.
You just burned $5 on nothing.
The Solution
VAP is an Execution Control Layer that sits between AI agents and paid external APIs.
It enforces:
- Pre-commit pricing – Know exact cost before execution
- Hard budget guarantees – Reserve → Burn → Refund model
- Deterministic retry behavior – No runaway costs
- Explicit execution ownership – Every task has an owner
How It Works
Agent: "Generate an image of a sunset"
↓
VAP: "That will cost $0.18. Reserving..."
VAP: "Reserved. Executing..."
VAP: "Success. Burning $0.18. Here's your image."
If it fails:
Agent: "Generate an image of a sunset"
↓
VAP: "That will cost $0.18. Reserving..."
VAP: "Reserved. Executing..."
VAP: "Failed. Refunding $0.18. Error: Provider timeout"
Your agent never sees the complexity. It just gets deterministic results.
Pricing
| Type | Preset | Price |
|---|---|---|
| Image | image.basic |
$0.18 |
| Video | video.basic |
$1.96 |
| Music | music.basic |
$0.68 |
| Campaign | streaming_campaign |
$5.90 |
| Full Production | full_production |
$7.90 |
No surprises. No variable pricing. No "it depends."
MCP Integration
VAP is on the official MCP Registry: io.github.elestirelbilinc-sketch/vap-e
Claude Desktop Configuration
{
"mcpServers": {
"vap": {
"url": "https://api.vapagent.com/mcp",
"transport": "streamable-http"
}
}
}
Available Tools (10)
| Tool | Description |
|---|---|
generate_image |
Generate AI image ($0.18) |
generate_video |
Generate AI video ($1.96) |
generate_music |
Generate AI music ($0.68) |
estimate_cost |
Get image generation cost |
estimate_video_cost |
Get video generation cost |
estimate_music_cost |
Get music generation cost |
check_balance |
Check account balance |
get_task |
Get task status by ID |
list_tasks |
List recent tasks |
execute_preset |
Execute named preset |
SDK Usage
Installation
pip install vape-client
Basic Usage
from vape_client import VAPClient
client = VAPClient(api_key="your_api_key")
# Cost is pre-committed: $0.18
result = client.generate_image(
prompt="A serene mountain landscape at sunset"
)
print(f"Image URL: {result.url}")
print(f"Cost: ${result.cost}")
Async Usage
import asyncio
from vape_client import AsyncVAPClient
async def main():
client = AsyncVAPClient(api_key="your_api_key")
# Budget enforced, retries limited
result = await client.generate_image(
prompt="A futuristic cityscape"
)
print(f"Image URL: {result.url}")
asyncio.run(main())
API Endpoints
| Endpoint | Method | Description |
|---|---|---|
/v3/generate |
POST | Create media execution task |
/v3/tasks/{id} |
GET | Retrieve task status |
/v3/tasks/{id}/result |
GET | Retrieve task result |
/v3/balance |
GET | Check account balance |
Full API Docs: api.vapagent.com/docs
The Three Guarantees
1. Pre-Commit Pricing
Every task has a known cost before execution. No surprises.
2. Budget Enforcement
Set a max budget. VAP enforces it. Hit the limit? Task rejected. Balance protected.
3. Failure Ownership
Every task has an explicit owner. Every failure has an address. No more "the agent did something and I don't know what."
Links
- MCP Registry: registry.modelcontextprotocol.io
- API Documentation: api.vapagent.com/docs
- MCP Endpoint:
https://api.vapagent.com/mcp
License
MIT License – see the LICENSE file for details.
VAP – Execution Control Layer for AI Agents
"VAP is where nondeterminism stops."
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。