
Vectara MCP server
Vectara MCP server
README
Vectara MCP Server
🔌 Compatible with Claude Desktop, and any other MCP Client!
Vectara MCP is also compatible with any MCP client
The Model Context Protocol (MCP) is an open standard that enables AI systems to interact seamlessly with various data sources and tools, facilitating secure, two-way connections.
Vectara-MCP provides any agentic application with access to fast, reliable RAG with reduced hallucination, powered by Vectara's Trusted RAG platform, through the MCP protocol.
Installation
You can install the package directly from PyPI:
pip install vectara-mcp
Available Tools
-
ask_vectara: Run a RAG query using Vectara, returning search results with a generated response.
Args:
- query: str, The user query to run - required.
- corpus_keys: list[str], List of Vectara corpus keys to use for the search - required. Please ask the user to provide one or more corpus keys.
- api_key: str, The Vectara API key - required.
- n_sentences_before: int, Number of sentences before the answer to include in the context - optional, default is 2.
- n_sentences_after: int, Number of sentences after the answer to include in the context - optional, default is 2.
- lexical_interpolation: float, The amount of lexical interpolation to use - optional, default is 0.005.
- max_used_search_results: int, The maximum number of search results to use - optional, default is 10.
- generation_preset_name: str, The name of the generation preset to use - optional, default is "vectara-summary-table-md-query-ext-jan-2025-gpt-4o".
- response_language: str, The language of the response - optional, default is "eng".
Returns:
- The response from Vectara, including the generated answer and the search results. <br><br>
-
search_vectara: Run a semantic search query using Vectara, without generation.
Args:
- query: str, The user query to run - required.
- corpus_keys: list[str], List of Vectara corpus keys to use for the search - required. Please ask the user to provide one or more corpus keys.
- api_key: str, The Vectara API key - required.
- n_sentences_before: int, Number of sentences before the answer to include in the context - optional, default is 2.
- n_sentences_after: int, Number of sentences after the answer to include in the context - optional, default is 2.
- lexical_interpolation: float, The amount of lexical interpolation to use - optional, default is 0.005.
Returns:
- The response from Vectara, including the matching search results.
Configuration with Claude Desktop
Add to your claude_desktop_config.json:
{
"mcpServers": {
"Vectara": {
"command": "uv",
"args": [
"tool",
"run",
"vectara-mcp"
]
}
}
}
Usage in Claude Desktop App
Once the installation is complete, and the Claude desktop app is configured, you must completely close and re-open the Claude desktop app to see the Vectara-mcp server. You should see a hammer icon in the bottom left of the app, indicating available MCP tools, you can click on the hammer icon to see more detial on the Vectara-search and Vectara-extract tools.
Now claude will have complete access to the Vectara-mcp server, including the ask-vectara and search-vectara tools. When you issue the tools for the first time, Claude will ask you for your Vectara api key and corpus key (or keys if you want to use multiple corpora). After you set those, you will be ready to go. Here are some examples you can try (with the Vectara corpus that includes information from our website:
Vectara RAG Examples
- Querying Vectara corpus:
ask-vectara Who is Amr Awadallah?
- Searching Vectara corpus:
search-vectara events in NYC?
Acknowledgments ✨
- Model Context Protocol for the MCP specification
- Anthropic for Claude Desktop
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。