Vector Memory MCP Server
Provides local vector-based semantic memory storage for AI assistants to persist context and decisions across sessions using local embeddings and LanceDB. It enables private semantic search and session handoff capabilities to maintain long-term project context.
README
Vector Memory MCP Server
Semantic memory storage for AI assistants. Store decisions, patterns, and context that persists across sessions.
A local-first MCP server that provides vector-based memory storage. Uses local embeddings and LanceDB for fast, private semantic search.
Features
- Local & Private - All embeddings generated locally, data stored in local LanceDB
- Semantic Search - Vector similarity search with configurable scoring
- Batch Operations - Store, update, delete, and retrieve multiple memories at once
- Session Handoffs - Save and restore project context between sessions
- MCP Native - Standard protocol, works with any MCP-compatible client
Quick Start
Prerequisites
- Bun 1.0+
- An MCP-compatible client (Claude Code, Claude Desktop, etc.)
Install
bun install -g @aeriondyseti/vector-memory-mcp
First install downloads ML models (~90MB). This may take a minute.
Configure
Add to your MCP client config (e.g., ~/.claude/settings.json):
{
"mcpServers": {
"vector-memory": {
"type": "stdio",
"command": "bunx",
"args": ["--bun", "@aeriondyseti/vector-memory-mcp"]
}
}
}
Use
Restart your MCP client. You now have access to:
| Tool | Description |
|---|---|
store_memories |
Save memories (accepts array) |
search_memories |
Find relevant memories semantically |
get_memories |
Retrieve memories by ID (accepts array) |
update_memories |
Update existing memories |
delete_memories |
Remove memories (accepts array) |
store_handoff |
Save session context for later |
get_handoff |
Restore session context |
Usage
Store a memory:
You: "Remember that we use Drizzle ORM for database access"
Assistant: [calls store_memories]
Search memories:
You: "What did we decide about the database?"
Assistant: [calls search_memories with relevant query]
Session handoffs:
You: "Save context for next session"
Assistant: [calls store_handoff with summary, completed items, next steps]
Configuration
Environment variables:
| Variable | Default | Description |
|---|---|---|
VECTOR_MEMORY_DB_PATH |
.vector-memory/memories.db |
Database location |
VECTOR_MEMORY_MODEL |
Xenova/all-MiniLM-L6-v2 |
Embedding model |
VECTOR_MEMORY_HTTP_PORT |
3271 |
HTTP server port |
Development
git clone https://github.com/AerionDyseti/vector-memory-mcp.git
cd vector-memory-mcp
bun install
bun run test # Run all tests
bun run dev # Watch mode
bun run typecheck # Type checking
See CHANGELOG.md for release history and ROADMAP.md for planned features.
Contributing
Contributions welcome! See issues for areas we'd love help with.
License
MIT - see LICENSE
Built with MCP SDK, LanceDB, and Transformers.js
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。