
vedit-mcp
vedit-mcp
README
Vedit-MCP
This is an MCP service for video editing
, which can achieve basic editing operations with just one sentence.
English | 中文
Quick Start
1. Install Dependencies
1.1 Clone this project or directly download the zip package
1.2 Configure the Python environment
- It is recommended to use uv for installation
cd vedit-mcp
uv pip install -r requirements.txt
- Or install directly using pip
pip install -r requirements.txt
1.3 Configure ffmpeg
vedit-mcp.py
relies on ffmpeg
for implementation. Therefore, please configure ffmpeg.
# For Mac
brew install ffmpeg
# For Ubuntu
sudo apt update
sudo apt install ffmpeg
2. Start the Service
2.1. It is recommended to use google-adk
to build your own project
- Please refer to adk-sample
Before executing this sample script
- Please ensure that the path format is at least as follows
- sample
- kb
- raw/test.mp4 // This is the original video you need to process
- adk_sample.py
- vedit_mcp.py
- Please install the following two dependencies
# # adk-sample pip install requirements
# google-adk==0.3.0
# litellm==1.67.2
- Please set the api-key and api-base
Currently, this script uses the API of the Volcano Ark Platform
, and you can go there to configure it by yourself.
After obtaining the API_KEY, please configure the API_KEY as an environment variable.
export OPENAI_API_KEY="your-api-key"
- Execute the script
cd sample
python adk_sample.py
- End of execution
After this script is executed correctly and ends, a video result file will be generated in kb/result, and a log file will be generated and the result will be output.
If you need secondary development, you can choose to add vedit_mcp.py
to your project for use.
2.2 Or build using cline
Firstly, please ensure that your Python environment and ffmpeg configuration are correct Configure cline_mcp_settings. json as follows
{
"mcpServers": {
"vedit-mcp": {
"command": "python",
"args": [
"vedit_mcp.py",
"--kb_dir",
"your-kb-dir-here"
]
}
}
}
2.3. Execute using the stramlit web interface
To be supplemented
3. precautions
- It is recommended to use the
thinking model
to handle this type of task. Currently, it seems that thethinking model
performs better in handling this type of task? But no further testing has been conducted, it's just an intuitive feeling.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。