Velero MCP Server
Provides read-only access to Velero backup and schedule resources in Kubernetes clusters, enabling AI agents to inspect backups, schedules, and generate Velero YAML manifests safely without write permissions.
README
Velero MCP Server
The Velero MCP Server is an open-source Model Context Protocol (MCP) server that exposes read-only, safe, structured access to Velero backup and schedule resources running inside any Kubernetes cluster.
It allows AI agents (ChatGPT, Claude, Cursor, GitHub Copilot, etc.) to:
- 🔍 Inspect Velero backups
- 🔄 Inspect Velero schedules
- 📄 Generate Velero Backup YAML manifests
- 🧩 Access Velero data as MCP resources
- 🔐 Safely interact with your cluster in read-only mode
This project helps platform engineers automate workflows using AI while ensuring zero-risk, low-privilege, and read-only access to critical cluster configuration.
⭐ Why This Project Exists
Velero is commonly used for:
- Kubernetes namespace & cluster backups
- Disaster recovery
- Cluster migrations
- Persistent volume snapshot management
But until now, no MCP server existed to expose Velero CRDs to LLM-based tools in a safe, structured way.
This project provides:
- A consistent API for querying Velero
- Strong typed models
- Complete read-only safety
- Guaranteed LLM-friendly output
- Ready integration with GitOps
🚀 Features
🔧 MCP Tools
list_velero_backups(namespace?: str)
Returns a list of Velero Backup CRs.
get_velero_backup(name: str, namespace?: str)
Returns a detailed structured backup object.
list_velero_schedules(namespace?: str)
Lists Velero Schedule CRs including cron, paused state, and last backup.
generate_velero_backup_yaml(...)
Generates read-only YAML for a Velero Backup.
📦 MCP Resource Endpoints
| Resource | Description |
|---|---|
velero://backups |
All backups in default namespace |
velero://schedules |
All schedules in default namespace |
These allow LLMs to explore Velero state without calling tools.
🏗 Architecture
- Python 3.10+
- MCP (official Model Context Protocol SDK)
- Kubernetes Python Client
- Pydantic models
- Safe, read-only design
- No
kubectl, no exec, no side effects
Flow:
MCP Client → Velero MCP Server → Kubernetes API → Velero CRDs
🔐 Security Model
Designed to be 100% safe
The server never:
- Creates backups
- Runs restores
- Deletes backup objects
- Writes anything to Kubernetes
Only reads CRDs via the Kubernetes API.
RBAC Required:
get, list on:
- backups.velero.io
- schedules.velero.io
📥 Installation
git clone https://github.com/YOUR-ORG/velero-mcp-server.git
cd velero-mcp-server
python -m venv .venv
source .venv/bin/activate # Windows: .venv\Scripts\activate
pip install -r requirements.txt
pip install .
For development:
pip install ".[dev]"
⚙️ Configuration
Environment Variables
| Variable | Description | Default |
|---|---|---|
KUBECONFIG |
Path to kubeconfig | auto |
VELERO_NAMESPACE |
Velero namespace | velero |
K8s auth order:
- In-cluster ServiceAccount
$KUBECONFIG~/.kube/config
▶️ Running the Server
Start the server in stdio mode (required by MCP):
python -m velero_mcp_server.server
🧩 Example MCP Client Configuration
ChatGPT MCP configuration
{
"mcpServers": {
"velero-mcp": {
"command": "python",
"args": ["-m", "velero_mcp_server.server"],
"env": {
"KUBECONFIG": "/path/to/kubeconfig",
"VELERO_NAMESPACE": "velero"
}
}
}
}
Claude Desktop
"mcpServers": {
"velero-mcp": {
"command": "python",
"args": ["-m", "velero_mcp_server.server"],
"env": {
"KUBECONFIG": "/path/to/kubeconfig",
"VELERO_NAMESPACE": "velero"
}
}
}
🧪 Example Usage (AI Agent)
List failed backups
“Call
list_velero_backupsand filter phase = Failed.”
Inspect a backup
“Use
get_velero_backupforprod-fulland tell me included namespaces.”
Generate a manifest
“Generate a Velero backup YAML including namespaces
db,logging, TTL=168h.”
Produces:
apiVersion: velero.io/v1
kind: Backup
metadata:
name: prod-backup
namespace: velero
spec:
includedNamespaces:
- db
- logging
ttl: 168h
🛠 Development
Run linters:
ruff check velero_mcp_server
Type-check:
mypy velero_mcp_server
Run tests:
pytest
🤝 Contributing
We welcome contributions of all kinds:
- Add Velero Restore / VolumeSnapshot support
- Improve error handling
- Add more MCP resources
- Add a Helm chart
- Add logging or metrics
- Improve documentation
Read the full CONTRIBUTING.md.
📜 License
This project is licensed under the MIT License, allowing:
- Commercial use
- Private use
- Modification
- Distribution
🗺 Roadmap
Planned improvements:
- Add support for Restore CRDs
- Snapshot objects
- Restore impact analysis
- Write-enabled mode (behind strict flags)
- Publish to PyPI
- Helm chart for cluster deployment
If you'd like to help shape the direction, please open an issue!
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。