Velero MCP Server

Velero MCP Server

Provides read-only access to Velero backup and schedule resources in Kubernetes clusters, enabling AI agents to inspect backups, schedules, and generate Velero YAML manifests safely without write permissions.

Category
访问服务器

README

Velero MCP Server

The Velero MCP Server is an open-source Model Context Protocol (MCP) server that exposes read-only, safe, structured access to Velero backup and schedule resources running inside any Kubernetes cluster.

It allows AI agents (ChatGPT, Claude, Cursor, GitHub Copilot, etc.) to:

  • 🔍 Inspect Velero backups
  • 🔄 Inspect Velero schedules
  • 📄 Generate Velero Backup YAML manifests
  • 🧩 Access Velero data as MCP resources
  • 🔐 Safely interact with your cluster in read-only mode

This project helps platform engineers automate workflows using AI while ensuring zero-risk, low-privilege, and read-only access to critical cluster configuration.


⭐ Why This Project Exists

Velero is commonly used for:

  • Kubernetes namespace & cluster backups
  • Disaster recovery
  • Cluster migrations
  • Persistent volume snapshot management

But until now, no MCP server existed to expose Velero CRDs to LLM-based tools in a safe, structured way.

This project provides:

  • A consistent API for querying Velero
  • Strong typed models
  • Complete read-only safety
  • Guaranteed LLM-friendly output
  • Ready integration with GitOps

🚀 Features

🔧 MCP Tools

list_velero_backups(namespace?: str)

Returns a list of Velero Backup CRs.

get_velero_backup(name: str, namespace?: str)

Returns a detailed structured backup object.

list_velero_schedules(namespace?: str)

Lists Velero Schedule CRs including cron, paused state, and last backup.

generate_velero_backup_yaml(...)

Generates read-only YAML for a Velero Backup.


📦 MCP Resource Endpoints

Resource Description
velero://backups All backups in default namespace
velero://schedules All schedules in default namespace

These allow LLMs to explore Velero state without calling tools.


🏗 Architecture

  • Python 3.10+
  • MCP (official Model Context Protocol SDK)
  • Kubernetes Python Client
  • Pydantic models
  • Safe, read-only design
  • No kubectl, no exec, no side effects

Flow:

MCP Client → Velero MCP Server → Kubernetes API → Velero CRDs

🔐 Security Model

Designed to be 100% safe

The server never:

  • Creates backups
  • Runs restores
  • Deletes backup objects
  • Writes anything to Kubernetes

Only reads CRDs via the Kubernetes API.

RBAC Required:

get, list on:
- backups.velero.io
- schedules.velero.io

📥 Installation

git clone https://github.com/YOUR-ORG/velero-mcp-server.git
cd velero-mcp-server

python -m venv .venv
source .venv/bin/activate    # Windows: .venv\Scripts\activate

pip install -r requirements.txt
pip install .

For development:

pip install ".[dev]"

⚙️ Configuration

Environment Variables

Variable Description Default
KUBECONFIG Path to kubeconfig auto
VELERO_NAMESPACE Velero namespace velero

K8s auth order:

  1. In-cluster ServiceAccount
  2. $KUBECONFIG
  3. ~/.kube/config

▶️ Running the Server

Start the server in stdio mode (required by MCP):

python -m velero_mcp_server.server

🧩 Example MCP Client Configuration

ChatGPT MCP configuration

{
  "mcpServers": {
    "velero-mcp": {
      "command": "python",
      "args": ["-m", "velero_mcp_server.server"],
      "env": {
        "KUBECONFIG": "/path/to/kubeconfig",
        "VELERO_NAMESPACE": "velero"
      }
    }
  }
}

Claude Desktop

"mcpServers": {
  "velero-mcp": {
    "command": "python",
    "args": ["-m", "velero_mcp_server.server"],
    "env": {
      "KUBECONFIG": "/path/to/kubeconfig",
      "VELERO_NAMESPACE": "velero"
    }
  }
}

🧪 Example Usage (AI Agent)

List failed backups

“Call list_velero_backups and filter phase = Failed.”

Inspect a backup

“Use get_velero_backup for prod-full and tell me included namespaces.”

Generate a manifest

“Generate a Velero backup YAML including namespaces db, logging, TTL=168h.”

Produces:

apiVersion: velero.io/v1
kind: Backup
metadata:
  name: prod-backup
  namespace: velero
spec:
  includedNamespaces:
    - db
    - logging
  ttl: 168h

🛠 Development

Run linters:

ruff check velero_mcp_server

Type-check:

mypy velero_mcp_server

Run tests:

pytest

🤝 Contributing

We welcome contributions of all kinds:

  • Add Velero Restore / VolumeSnapshot support
  • Improve error handling
  • Add more MCP resources
  • Add a Helm chart
  • Add logging or metrics
  • Improve documentation

Read the full CONTRIBUTING.md.


📜 License

This project is licensed under the MIT License, allowing:

  • Commercial use
  • Private use
  • Modification
  • Distribution

🗺 Roadmap

Planned improvements:

  • Add support for Restore CRDs
  • Snapshot objects
  • Restore impact analysis
  • Write-enabled mode (behind strict flags)
  • Publish to PyPI
  • Helm chart for cluster deployment

If you'd like to help shape the direction, please open an issue!

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选