Vendor Risk Assessment MCP Server
Enables AI-powered vendor risk assessment using AWS Titan, allowing users to evaluate individual vendors, compare multiple vendors, and get industry risk benchmarks through natural language queries.
README
Simple Vendor Risk Assessment MCP Server
🎯 Simplest possible vendor risk assessment using AWS Titan and MCP
Following krishnaik06 MCP-CRASH-Course pattern with function-only implementation.
🚀 Quick Start
Google Colab (Easiest)
- Open
Vendor_Risk_Assessment_MCP.ipynbin Google Colab - Add your AWS credentials
- Run all cells
Local Setup
# Extract and setup
unzip simple_vendor_risk_mcp.zip
cd vendor-risk-mcp
python setup.py
# Configure AWS
cp .env.example .env
# Edit .env with your AWS credentials
# Test
python test_client.py
# Run MCP server
python main.py
🔧 MCP Tools
| Tool | Description |
|---|---|
assess_vendor_risk(vendor_name) |
Single vendor risk assessment |
compare_vendors(vendor_list) |
Compare multiple vendors |
get_industry_risk_benchmark(industry) |
Industry risk insights |
health_check() |
System status check |
⚙️ Claude Desktop Config
Add to claude_desktop_config.json:
{
"mcpServers": {
"vendor-risk": {
"command": "python",
"args": ["/path/to/main.py"],
"env": {
"AWS_ACCESS_KEY_ID": "your_key",
"AWS_SECRET_ACCESS_KEY": "your_secret"
}
}
}
}
💡 Example Usage
Single Assessment:
"Assess the risk of using Salesforce"
→ assess_vendor_risk("Salesforce")
Comparison:
"Compare Microsoft vs Google vs Amazon"
→ compare_vendors("Microsoft, Google, Amazon")
Industry Benchmark:
"What are typical risks in Healthcare?"
→ get_industry_risk_benchmark("Healthcare")
📊 How It Works
- Mock Data Generation: Creates realistic vendor profiles
- AWS Titan Analysis: AI-powered risk insights
- Risk Scoring: 1-10 scale (lower = better)
- Comprehensive Reports: Executive summaries with recommendations
🛠️ Architecture
- Function-only implementation (no classes)
- FastMCP server for MCP protocol
- AWS Bedrock Titan for AI analysis
- Realistic mock data for demonstrations
- Google Colab compatible
🔒 Requirements
- Python 3.9+
- AWS account with Bedrock access
- AWS credentials configured
📱 Files Included
main.py- Main MCP servertest_client.py- Simple testingsetup.py- Easy installationVendor_Risk_Assessment_MCP.ipynb- Google Colab notebook- Configuration and documentation files
Built following krishnaik06 MCP-CRASH-Course patterns! 🚀
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。