
Vercel MCP Python Server
A serverless MCP server deployed on Vercel that provides basic utility tools including echo, time retrieval, arithmetic operations, and mock weather information. Includes an interactive client application for testing and demonstration purposes.
README
Vercel MCP Python Server
A Model Context Protocol (MCP) server built with Python and FastMCP, designed to run on Vercel's serverless platform.
Project Structure
vercel-mcp-python/
├── api/
│ └── index.py # Main Vercel function
├── src/
│ └── mcp_server.py # Your MCP server logic
├── client-app/ # Interactive MCP client
│ ├── mcp_client.py # Rich client application
│ ├── requirements.txt # Client dependencies
│ ├── setup.py # Setup script
│ ├── README.md # Client documentation
│ └── run_client.bat # Windows launcher
├── requirements.txt # Server dependencies
├── vercel.json # Vercel configuration
└── README.md
Features
This MCP server provides the following tools:
- echo: Echo back a provided message
- get_time: Get the current server time
- add_numbers: Add two numbers together
- get_weather_info: Get mock weather information for a location
And the following resources:
- config://server: Server configuration information
Prerequisites
Before setting up the project, you'll need to install the Vercel CLI:
Installing Vercel CLI
For Git Bash on Windows:
-
Install Node.js (if not already installed):
- Download from nodejs.org
-
Install Vercel CLI globally:
npm install -g vercel
-
Verify installation:
vercel --version
If you encounter PATH issues:
# Find npm global directory
npm config get prefix
# Add to PATH (add this to your ~/.bashrc)
export PATH=$PATH:$(npm bin -g)
source ~/.bashrc
Alternative methods:
# Using npx (no global installation)
npx vercel
# Using yarn
yarn global add vercel
Setup
-
Create and activate virtual environment (Recommended):
# Create virtual environment python -m venv venv # Activate virtual environment # On Windows PowerShell: .\venv\Scripts\Activate.ps1 # On Windows Git Bash: source venv/Scripts/activate # On macOS/Linux: source venv/bin/activate
-
Install dependencies:
pip install -r requirements.txt
-
Login to Vercel:
vercel login
-
Deploy to Vercel:
vercel --prod
Local Development
To test locally, you can use Vercel's development server:
vercel dev
Troubleshooting Windows Issues
Note: Local development with vercel dev
may have issues on Windows due to runtime initialization errors. This is a known limitation and doesn't affect production deployment.
If you encounter issues with vercel dev
:
Solution 1: Deploy directly (Recommended)
vercel --prod
Your server will be available at the provided Vercel URL and works perfectly in production.
Solution 2: Test locally with Python (in virtual environment)
# Activate virtual environment first
.\venv\Scripts\Activate.ps1 # Windows PowerShell
# or
source venv/Scripts/activate # Windows Git Bash
# Test MCP server functionality
python -c "
import sys, os
sys.path.append('src')
from mcp_server import mcp
import json
# Test echo tool
request = {
'jsonrpc': '2.0',
'id': 1,
'method': 'tools/call',
'params': {'name': 'echo', 'arguments': {'message': 'Hello from venv!'}}
}
response = mcp.handle_request(request)
print(json.dumps(response, indent=2))
"
Solution 3: Use the deployed version Your server will be available at your Vercel domain after deployment.
You can test it by:
- Opening the URL in your browser
- Using a tool like Postman or curl
- Connecting with an MCP client
Solution 4: Run as Administrator (if needed)
- Close your terminal
- Right-click on Git Bash/PowerShell and select "Run as administrator"
- Navigate back to your project:
cd /d/repos/vercel-mcp-python
- Try
vercel dev
again
API Endpoints
GET /
: Returns server information and statusPOST /
: Handles MCP protocol requestsOPTIONS /
: Handles CORS preflight requests
Dependencies
fastmcp>=0.15.0
: FastMCP framework for building MCP serversuvicorn>=0.24.0
: ASGI server for Python web applicationspython-json-logger>=2.0.0
: JSON logging for Python applications
Configuration
The server is configured through vercel.json
with:
- Python runtime using
@vercel/python
- 30-second maximum execution time
- CORS enabled for cross-origin requests
- Automatic routing to the main handler
Usage
Once deployed, your MCP server will be available at your Vercel domain. You can connect to it using any MCP-compatible client.
Using the Included Client App
A rich, interactive client application is included in the client-app/
directory:
# Navigate to client directory
cd client-app
# Setup (first time only)
python setup.py
# Configure environment (optional)
cp .env.example .env
# Edit .env to customize server URL and settings
# Run the client
python mcp_client.py
The client provides:
- 🔌 Connection testing
- 🔧 Interactive tool calling
- 📚 Resource management
- 🧪 Automated testing of all tools
- 🎨 Beautiful console interface
See client-app/README.md
for detailed usage instructions.
Additional Resources
- Vercel MCP Documentation - Official Vercel documentation for Model Context Protocol
- MCP Servers Repository - Explore available MCP servers
- AI SDK Documentation - Use the AI SDK to initialize MCP clients
License
MIT
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。