Vertex AI MCP Server

Vertex AI MCP Server

Implementation of Model Context Protocol (MCP) server that provides tools for accessing Google Cloud's Vertex AI Gemini models, supporting features like web search grounding and direct knowledge answering for coding assistance and general queries.

Category
访问服务器

README

Vertex AI MCP Server

This project implements a Model Context Protocol (MCP) server that provides a comprehensive suite of tools for interacting with Google Cloud's Vertex AI Gemini models, focusing on coding assistance and general query answering.

Features

  • Provides access to Vertex AI Gemini models via numerous MCP tools.
  • Supports web search grounding (answer_query_websearch) and direct knowledge answering (answer_query_direct).
  • Configurable model ID, temperature, streaming behavior, max output tokens, and retry settings via environment variables.
  • Uses streaming API by default for potentially better responsiveness.
  • Includes basic retry logic for transient API errors.
  • Minimal safety filters applied (BLOCK_NONE) to reduce potential blocking (use with caution).

Tools Provided

Query & Answer

  • answer_query_websearch: Answers query using the configured Vertex AI model + Google Search grounding.
  • answer_query_direct: Answers query using the configured Vertex AI model's internal knowledge.
  • answer_doc_query: Finds official documentation for a topic and answers a query based primarily on that documentation, supplemented by web search for coding issues, using the configured Vertex AI model.

(Note: Input/output details for each tool can be inferred from the ListToolsRequestSchema handler in src/index.ts or dynamically via MCP introspection if supported by the client.)

Prerequisites

  • Node.js (v18+)
  • Bun (npm install -g bun)
  • Google Cloud Project with Billing enabled.
  • Vertex AI API enabled in the GCP project.
  • Google Cloud Authentication configured in your environment (Application Default Credentials via gcloud auth application-default login is recommended, or a Service Account Key).

Setup & Installation

  1. Clone/Place Project: Ensure the project files are in your desired location.
  2. Install Dependencies:
    bun install
    
  3. Configure Environment:
    • Create a .env file in the project root (copy .env.example).
    • Set the required and optional environment variables as described in .env.example. Ensure GOOGLE_CLOUD_PROJECT is set.
  4. Build the Server:
    bun run build
    
    This compiles the TypeScript code to build/index.js.

Running with Cline

  1. Configure MCP Settings: Add/update the configuration in your Cline MCP settings file (e.g., .roo/mcp.json).

    {
      "mcpServers": {
        "vertex-ai-mcp-server": {
          "command": "node",
          "args": [
            "/full/path/to/your/vertex-ai-mcp-server/build/index.js" // Use absolute path or ensure it's relative to where Cline runs node
          ],
          "env": {
            // Required: Ensure these match your .env or are set here
            "GOOGLE_CLOUD_PROJECT": "YOUR_GCP_PROJECT_ID",
            "GOOGLE_CLOUD_LOCATION": "us-central1",
            // Required if not using ADC:
            // "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json",
            // Optional overrides:
            "VERTEX_AI_MODEL_ID": "gemini-2.5-pro-exp-03-25",
            "VERTEX_AI_TEMPERATURE": "0.0",
            "VERTEX_AI_USE_STREAMING": "true",
            "VERTEX_AI_MAX_OUTPUT_TOKENS": "65535",
            "VERTEX_AI_MAX_RETRIES": "3",
            "VERTEX_AI_RETRY_DELAY_MS": "1000"
          },
          "disabled": false,
          "alwaysAllow": [
             // Add tool names here if you don't want confirmation prompts
             // e.g., "answer_query_websearch"
          ],
          "timeout": 3600 // Optional: Timeout in seconds
        }
        // Add other servers here...
      }
    }
    
    • Important: Ensure the args path points correctly to the build/index.js file. Using an absolute path might be more reliable.
    • Ensure the environment variables in the env block are correctly set, either matching .env or explicitly defined here. Remove comments from the actual JSON file.
  2. Restart/Reload Cline: Cline should detect the configuration change and start the server.

  3. Use Tools: You can now use the extensive list of tools via Cline.

Development

  • Watch Mode: bun run watch
  • Linting: bun run lint
  • Formatting: bun run format

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选