Vibe Preprocessing and Analysis MCP Server

Vibe Preprocessing and Analysis MCP Server

Enables users to preprocess, analyze, and visualize CSV data through comprehensive tools for data manipulation, statistical analysis, and graph generation.

Category
访问服务器

README

Vibe Preprocessing and Analysis MCP Server for CSV files

A powerful MCP (Model Control Protocol) server for preprocessing and analyzing CSV files. This server provides a suite of tools for data manipulation, visualization, and analysis through an intuitive interface.

Features

  • Data Loading and Management

    • Load CSV files from a specified working directory
    • Set and manage working directories
    • List files in the working directory
    • Save processed dataframes to new files
  • Data Preprocessing

    • Handle mixed data types in columns
    • Manage null values with various strategies:
      • Remove rows with nulls
      • Fill with mean/median/mode
      • Forward/backward fill
      • Fill with constant values
    • Drop and rename columns
    • Run custom dataframe editing code
    • Save processed data to new files
  • Data Analysis

    • Generate comprehensive data descriptions
    • Create correlation matrices with visualizations
    • Handle mixed data types in columns
    • Run custom analysis code
  • Data Visualization

    • Create various types of plots:
      • Line plots
      • Bar charts
      • Scatter plots
      • Histograms with KDE
      • Box plots
      • Violin plots
      • Pie charts
      • Count plots
      • Kernel Density Estimation plots
    • Custom graph generation through code
    • Save visualizations to the working directory
    • Run custom visualization code

Setup Instructions

Prerequisites

  • Python 3.x
  • uv (recommended package manager). I recommend using uv to manage the server.

Installation

  1. Add MCP and required dependencies:
uv add "mcp[cli]"
uv add pandas matplotlib seaborn numpy
  1. Install the server in Claude Desktop:
mcp install server.py

Alternative Installation with pip

If you prefer using pip:

pip install "mcp[cli]" pandas matplotlib seaborn numpy

Usage

  1. Start the MCP server:
uv run mcp
  1. Test the server using MCP Inspector:
mcp dev server.py

You can install this server in Claude Desktop and interact with it right away by running:

mcp install server.py

Alternatively, you can test it with the MCP Inspector:

mcp dev server.py

Available Tools

Data Management

  • send_work_dir(): Retrieve the current working directory
  • set_work_dir(new_work_dir): Set a new working directory
  • list_work_dir_files(): List files in the current working directory
  • load_csv(filename): Load a CSV file into the system
  • save_global_df(filename): Save the current dataframe to a file

Data Preprocessing

  • handle_column_mixed_types(): Handle columns with mixed data types
  • handle_null_values(strategy, columns): Handle null values in the dataset with various strategies
  • drop_columns(columns): Remove specified columns
  • rename_columns(column_mapping): Rename columns in the dataframe
  • run_custom_df_edit_code(code): Execute custom dataframe manipulation code

Data Analysis

  • describe_df(): Generate a statistical summary of the dataframe
  • generate_correlation_matrix(): Create a correlation matrix with visualization

Data Visualization

  • plot_graph(graph_type, x_column, y_column, output_filename): Create various types of plots
    • Supported graph types: line, bar, scatter, hist, box, violin, pie, count, kde
  • run_custom_graph_code(code): Execute custom visualization code

Environment Variables

  • WORK_DIR: The working directory where files are read from and saved to

Error Handling

The server includes comprehensive error handling for:

  • Missing working directories
  • File not found errors
  • Data loading and processing errors
  • Invalid operations on empty dataframes
  • Mixed data type handling
  • Custom code execution errors
  • Invalid column names
  • Invalid graph types
  • Null value handling errors

Contributing

Feel free to submit issues and enhancement requests!

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选