Vibe Preprocessing and Analysis MCP Server
Enables users to preprocess, analyze, and visualize CSV data through comprehensive tools for data manipulation, statistical analysis, and graph generation.
README
Vibe Preprocessing and Analysis MCP Server for CSV files
A powerful MCP (Model Control Protocol) server for preprocessing and analyzing CSV files. This server provides a suite of tools for data manipulation, visualization, and analysis through an intuitive interface.
Features
-
Data Loading and Management
- Load CSV files from a specified working directory
- Set and manage working directories
- List files in the working directory
- Save processed dataframes to new files
-
Data Preprocessing
- Handle mixed data types in columns
- Manage null values with various strategies:
- Remove rows with nulls
- Fill with mean/median/mode
- Forward/backward fill
- Fill with constant values
- Drop and rename columns
- Run custom dataframe editing code
- Save processed data to new files
-
Data Analysis
- Generate comprehensive data descriptions
- Create correlation matrices with visualizations
- Handle mixed data types in columns
- Run custom analysis code
-
Data Visualization
- Create various types of plots:
- Line plots
- Bar charts
- Scatter plots
- Histograms with KDE
- Box plots
- Violin plots
- Pie charts
- Count plots
- Kernel Density Estimation plots
- Custom graph generation through code
- Save visualizations to the working directory
- Run custom visualization code
- Create various types of plots:
Setup Instructions
Prerequisites
- Python 3.x
- uv (recommended package manager). I recommend using uv to manage the server.
Installation
- Add MCP and required dependencies:
uv add "mcp[cli]"
uv add pandas matplotlib seaborn numpy
- Install the server in Claude Desktop:
mcp install server.py
Alternative Installation with pip
If you prefer using pip:
pip install "mcp[cli]" pandas matplotlib seaborn numpy
Usage
- Start the MCP server:
uv run mcp
- Test the server using MCP Inspector:
mcp dev server.py
You can install this server in Claude Desktop and interact with it right away by running:
mcp install server.py
Alternatively, you can test it with the MCP Inspector:
mcp dev server.py
Available Tools
Data Management
send_work_dir(): Retrieve the current working directoryset_work_dir(new_work_dir): Set a new working directorylist_work_dir_files(): List files in the current working directoryload_csv(filename): Load a CSV file into the systemsave_global_df(filename): Save the current dataframe to a file
Data Preprocessing
handle_column_mixed_types(): Handle columns with mixed data typeshandle_null_values(strategy, columns): Handle null values in the dataset with various strategiesdrop_columns(columns): Remove specified columnsrename_columns(column_mapping): Rename columns in the dataframerun_custom_df_edit_code(code): Execute custom dataframe manipulation code
Data Analysis
describe_df(): Generate a statistical summary of the dataframegenerate_correlation_matrix(): Create a correlation matrix with visualization
Data Visualization
plot_graph(graph_type, x_column, y_column, output_filename): Create various types of plots- Supported graph types: line, bar, scatter, hist, box, violin, pie, count, kde
run_custom_graph_code(code): Execute custom visualization code
Environment Variables
WORK_DIR: The working directory where files are read from and saved to
Error Handling
The server includes comprehensive error handling for:
- Missing working directories
- File not found errors
- Data loading and processing errors
- Invalid operations on empty dataframes
- Mixed data type handling
- Custom code execution errors
- Invalid column names
- Invalid graph types
- Null value handling errors
Contributing
Feel free to submit issues and enhancement requests!
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。