Video Content Summarization MCP Server

Video Content Summarization MCP Server

Extracts content from multiple video platforms (Douyin, Bilibili, Xiaohongshu, Zhihu) and generates intelligent knowledge graphs with OCR text recognition capabilities.

Category
访问服务器

README

Video Content Summarization MCP Server

A Model Context Protocol (MCP) server that extracts content from multiple video platforms and generates intelligent knowledge graphs.

Features

🌐 Multi-Platform Support

  • Douyin (TikTok China) - Short video content extraction
  • Bilibili - Video and live streaming content
  • Xiaohongshu (Little Red Book) - Social media posts with OCR support
  • Zhihu - Q&A platform content

✨ Advanced Capabilities

  • OCR Text Recognition - Extract text from images using PaddleOCR
  • Knowledge Graph Generation - Intelligent content structuring
  • Chinese Content Optimization - Specialized processing for Chinese text
  • Context-Aware Extraction - Smart content understanding and quality control

Installation

Prerequisites

  • Python 3.8 or higher
  • Anaconda (recommended for dependency management)

Setup

  1. Clone the repository:
git clone https://github.com/fakad/video-sum-mcp.git
cd video-sum-mcp
  1. Create and activate conda environment:
conda create -n vsc python=3.8
conda activate vsc
  1. Install dependencies:
pip install -r requirements.txt

Configuration

For Claude Desktop

Add this configuration to your Claude Desktop config file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "video-sum-mcp": {
      "command": "python",
      "args": ["/path/to/video-sum-mcp/main.py"],
      "cwd": "/path/to/video-sum-mcp",
      "env": {
        "CONDA_DEFAULT_ENV": "vsc"
      }
    }
  }
}

For Other MCP Clients

The server can be started directly:

python main.py

Usage

Basic Video Processing

# Example: Process a Bilibili video
result = process_video(
    url="https://www.bilibili.com/video/BV1234567890",
    output_format="markdown"
)

Supported URL Formats

  • Douyin: https://v.douyin.com/... or full URLs
  • Bilibili: https://www.bilibili.com/video/...
  • Xiaohongshu: https://www.xiaohongshu.com/discovery/item/...
  • Zhihu: https://www.zhihu.com/question/...

Context-Enhanced Processing

For platforms with anti-crawling measures, you can provide context:

result = process_video(
    url="https://...",
    context_text="Additional context information..."
)

Features in Detail

OCR Integration

  • Automatic image text extraction from Xiaohongshu posts
  • PaddleOCR for accurate Chinese character recognition
  • Batch processing for multiple images

Knowledge Graph Generation

  • Structured content analysis
  • Intelligent relationship mapping
  • Quality control and validation

Anti-Crawling Strategies

  • Smart fallback mechanisms
  • Context-based extraction
  • User guidance for optimal results

Development

Project Structure

video-sum-mcp/
├── core/                 # Core functionality modules
│   ├── extractors/       # Platform-specific extractors
│   ├── processors/       # Content processing logic
│   ├── knowledge_graph/  # Knowledge graph generation
│   └── managers/         # Resource management
├── scripts/              # MCP server implementation
├── main.py              # Main entry point
├── requirements.txt     # Python dependencies
└── pyproject.toml       # Project configuration

Running Tests

python -m pytest

Dependencies

Key dependencies include:

  • bilibili-api-python - Bilibili API integration
  • yt-dlp - Video downloading capabilities
  • PaddleOCR - OCR text recognition
  • beautifulsoup4 - Web scraping
  • requests - HTTP requests

See requirements.txt for complete list.

Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选