Video Edit MCP Server
A Model Context Protocol server that enables AI assistants to perform comprehensive video and audio editing operations including trimming, effects, overlays, audio processing, and YouTube downloads.
README
Video Edit MCP Server 🎬
A powerful Model Context Protocol (MCP) server designed for advanced video and audio editing operations. This server enables MCP clients—such as Claude Desktop, Cursor, and others—to perform comprehensive multimedia editing tasks through a standardized and unified interface.
https://github.com/user-attachments/assets/134b8b82-80b1-4678-8930-ab53121b121f
✨ Key Features
🎥 Video Operations
- Basic Editing: Trim, merge, resize, crop, rotate videos
- Effects: Speed control, fade in/out, grayscale, mirror
- Overlays: Add text, images, or video overlays with transparency
- Format Conversion: Convert between formats with codec control
- Frame Operations: Extract frames, create videos from images
🎵 Audio Operations
- Audio Processing: Extract, trim, loop, concatenate audio
- Volume Control: Adjust levels, fade in/out effects
- Audio Mixing: Mix multiple tracks together
- Integration: Add audio to videos, replace soundtracks
📥 Download & Utilities
- Video Download: Download from YouTube and other platforms
- File Management: Directory operations, file listing
- Path Suggestions: Get recommended download locations
🧹 Memory & Cleanup
- Smart Memory: Chain operations without saving intermediate files
- Resource Management: Clear memory, check stored objects
- Efficient Processing: Keep objects in memory for complex workflows
🔗 Operation Chaining
Seamlessly chain multiple operations together without creating intermediate files. Process your video through multiple steps (trim → add audio → apply effects → add text) while keeping everything in memory for optimal performance.
📋 Requirements
- Python 3.10 or higher
- moviepy==1.0.3
- yt-dlp>=2023.1.6
- mcp>=1.12.2
- typing-extensions>=4.0.0
⚙️ Installation & Setup
For Claude Desktop / Cursor MCP Integration
Ensure that uv is installed.
If not, install it using the following PowerShell command:
powershell -ExecutionPolicy Bypass -Command "irm https://astral.sh/uv/install.ps1 | iex"
Add this configuration to your MCP configuration file:
{
"mcpServers": {
"video_editing": {
"command": "uvx",
"args": [
"--python",
"3.11",
"video-edit-mcp"
]
}
}
}
Configuration file locations:
- Claude Desktop (Windows):
%APPDATA%/Claude/claude_desktop_config.json - Claude Desktop (macOS):
~/Library/Application Support/Claude/claude_desktop_config.json - Cursor:
.cursor/mcp.jsonin your project root
Manual Installation
git clone https://github.com/Aditya2755/video-edit-mcp.git
cd video-edit-mcp
pip install -r requirements.txt
pip install -e .
🏗️ Project Structure
video_edit_mcp/
├── src/
│ └── video_edit_mcp/
│ ├── __init__.py
│ ├── main.py # MCP server implementation
│ ├── video_operations.py # Video editing tools
│ ├── audio_operations.py # Audio processing tools
│ ├── download_utils.py # Download functionality
│ ├── util_tools.py # Memory & utility tools
│ ├── utils.py # Utility functions
│
├── pyproject.toml # Project configuration
├── requirements.txt # Dependencies
├── uv.lock # Lock file
├── LICENSE # MIT License
├── MANIFEST.in # Manifest file
└── README.md
🎯 Example Usage
# Chain operations without intermediate files
video_info = get_video_info("input.mp4")
trimmed = trim_video("input.mp4", 10, 60, return_path=False) # Keep in memory
with_audio = add_audio(trimmed, "background.mp3", return_path=False)
final = add_text_overlay(with_audio, "Hello World", x=100, y=50, return_path=True)
🚀 Future Enhancements & Contributions
We welcome contributions in these exciting areas:
🤖 AI-Powered Features
- Speech-to-Text (STT): Automatic subtitle generation and transcription
- Text-to-Speech (TTS): AI voice synthesis for narration
- Audio Enhancement: AI-based noise reduction and audio quality improvement
- Smart Timestamps: Automatic scene detection and chapter generation
- Face Tracking: Advanced face detection and tracking for automatic editing
- Object Recognition: Track and edit based on detected objects
- Content Analysis: AI-powered content categorization and tagging
🤝 Contributing
- Fork the repository
- Create a feature branch:
git checkout -b feature/amazing-feature - Commit your changes:
git commit -m 'Add amazing feature' - Push to the branch:
git push origin feature/amazing-feature - Open a Pull Request
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
<div align="center">
Made with ❤️ for the AI and multimedia editing community
⭐ Star this project | 🤝 Contribute | 📖 Documentation
</div>
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。