Video Editor MCP

Video Editor MCP

Enables users to upload, search, edit, and generate videos through Video Jungle, supporting custom URI schemes and integration with video editing tools like DaVinci Resolve.

Category
访问服务器

README

Video Editor MCP server

Video Jungle MCP Server

See a demo here: https://www.youtube.com/watch?v=KG6TMLD8GmA

Upload, edit, search, and generate videos from everyone's favorite LLM and Video Jungle.

You'll need to sign up for an account at Video Jungle in order to use this tool, and add your API key.

PyPI version

Components

Resources

The server implements an interface to upload, generate, and edit videos with:

  • Custom vj:// URI scheme for accessing individual videos and projects
  • Each project resource has a name, description
  • Search results are returned with metadata about what is in the video, and when, allowing for edit generation directly

Prompts

Coming soon.

Tools

The server implements a few tools:

  • add-video
    • Add a Video File for analysis from a URL. Returns an vj:// URI to reference the Video file
  • create-videojungle-project
    • Creates a Video Jungle project to contain generative scripts, analyzed videos, and images for video edit generation
  • edit-locally
    • Creates an OpenTimelineIO project and downloads it to your machine to open in a Davinci Resolve Studio instance (Resolve Studio must already be running before calling this tool.)
  • generate-edit-from-videos
    • Generates a rendered video edit from a set of video files
  • generate-edit-from-single-video
    • Generate an edit from a single input video file
  • get-project-assets
    • Get assets within a project for video edit generation.
  • search-videos
    • Returns video matches based upon embeddings and keywords
  • update-video-edit
    • Live update a video edit's information. If Video Jungle is open, edit will be updated in real time.

Using Tools in Practice

In order to use the tools, you'll need to sign up for Video Jungle and add your API key.

add-video

Here's an example prompt to invoke the add-video tool:

can you download the video at https://www.youtube.com/shorts/RumgYaH5XYw and name it fly traps?

This will download a video from a URL, add it to your library, and analyze it for retrieval later. Analysis is multi-modal, so both audio and visual components can be queried against.

search-videos

Once you've got a video downloaded and analyzed, you can then do queries on it using the search-videos tool:

can you search my videos for fly traps?

Search results contain relevant metadata for generating a video edit according to details discovered in the initial analysis.

search-local-videos

You must set the environment variable LOAD_PHOTOS_DB=1 in order to use this tool, as it will make Claude prompt to access your files on your local machine.

Once that's done, you can search through your Photos app for videos that exist on your phone, using Apple's tags.

In my case, when I search for "Skateboard", I get 1903 video files.

can you search my local video files for Skateboard?

generate-edit-from-videos

Finally, you can use these search results to generate an edit:

can you create an edit of all the times the video says "fly trap"?

(Currently), the video edits tool relies on the context within the current chat.

generate-edit-from-single-video

Finally, you can cut down an edit from a single, existing video:

can you create an edit of all the times this video says the word "fly trap"?

Configuration

You must login to Video Jungle settings, and get your API key. Then, use this to start Video Jungle MCP:

$ uv run video-editor-mcp YOURAPIKEY

To allow this MCP server to search your Photos app on MacOS:

$ LOAD_PHOTOS_DB=1 uv run video-editor-mcp YOURAPIKEY

Quickstart

Install

Installing via Smithery

To install Video Editor for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install video-editor-mcp --client claude

Claude Desktop

You'll need to adjust your claude_desktop_config.json manually:

On MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json On Windows: %APPDATA%/Claude/claude_desktop_config.json

<details> <details> <summary>Published Server Configuration</summary>

 "mcpServers": {
   "video-editor-mcp": {
     "command": "uvx",
     "args": [
       "video-editor-mcp",
       "YOURAPIKEY"
     ]
   }
 }

</details> <summary>Development/Unpublished Servers Configuration</summary>

 "mcpServers": {
   "video-editor-mcp": {
     "command": "uv",
     "args": [
       "--directory",
       "/Users/YOURDIRECTORY/video-editor-mcp",
       "run",
       "video-editor-mcp",
       "YOURAPIKEY"
     ]
   }
 }

With local Photos app access enabled (search your Photos app):

  "video-jungle-mcp": {
    "command": "uv",
    "args": [
      "--directory",
      "/Users/<PATH_TO>/video-jungle-mcp",
      "run",
      "video-editor-mcp",
      "<YOURAPIKEY>"
    ],
   "env": {
        "LOAD_PHOTOS_DB": "1"
    }
  },

</details>

Be sure to replace the directories with the directories you've placed the repository in on your computer.

Development

Building and Publishing

To prepare the package for distribution:

  1. Sync dependencies and update lockfile:
uv sync
  1. Build package distributions:
uv build

This will create source and wheel distributions in the dist/ directory.

  1. Publish to PyPI:
uv publish

Note: You'll need to set PyPI credentials via environment variables or command flags:

  • Token: --token or UV_PUBLISH_TOKEN
  • Or username/password: --username/UV_PUBLISH_USERNAME and --password/UV_PUBLISH_PASSWORD

Debugging

Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we strongly recommend using the MCP Inspector.

You can launch the MCP Inspector via npm with this command:

(Be sure to replace YOURDIRECTORY and YOURAPIKEY with the directory this repo is in, and your Video Jungle API key, found in the settings page.)

npx @modelcontextprotocol/inspector uv run --directory /Users/YOURDIRECTORY/video-editor-mcp video-editor-mcp YOURAPIKEY

Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.

Additionally, I've added logging to app.log in the project directory. You can add logging to diagnose API calls via a:

logging.info("this is a test log")

A reasonable way to follow along as you're workin on the project is to open a terminal session and do a:

$ tail -n 90 -f app.log

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选