Video Quality MCP Server
Enables comprehensive video quality analysis including metadata extraction, GOP structure analysis, quality metrics comparison (PSNR, SSIM, VMAF), artifact detection, and transcoding effect assessment through FFmpeg-based tools.
README
Video Quality MCP Server
An MCP (Model Context Protocol) Server for video quality analysis and transcoding effect comparison.
Features
- 📹 Video Metadata Analysis - Extract encoding parameters, resolution, frame rate, etc.
- 🎬 GOP/Frame Structure Analysis - Analyze keyframe distribution and GOP structure
- 📊 Quality Metrics Comparison - Calculate objective metrics like PSNR, SSIM, VMAF
- 🔍 Artifact Analysis - Detect blur, blocking, ringing, banding, dark detail loss
- 📝 Transcode Summary - Generate LLM-friendly transcoding quality assessment reports
Installation
pip install -r requirements.txt
Running
Running as MCP Server
python main.py
The server communicates with clients via stdio protocol.
Configuration in Cursor
Add the following to your Cursor MCP configuration file:
{
"mcpServers": {
"video-quality": {
"command": "python",
"args": ["/path/to/video-quality-mcp/main.py"]
}
}
}
Tools
1. analyze_video_metadata
Parse video file metadata and encoding parameters.
Input:
path(string): Path to video file
Output:
- Container format, duration, file size, bitrate
- Video codec, profile, level, resolution, frame rate, pixel format
2. analyze_gop_structure
Analyze video GOP structure and frame type distribution.
Input:
path(string): Path to video file
Output:
- I/P/B frame distribution statistics
- GOP average/min/max length
- Keyframe timestamp list
3. compare_quality_metrics
Compare quality metrics between two video files.
Input:
reference(string): Path to reference videodistorted(string): Path to video to evaluate
Output:
- PSNR (Y/U/V components)
- SSIM score
- VMAF score
4. analyze_artifacts
Analyze video artifacts and perceptual quality proxy metrics.
Input:
target(string): Path to target videoreference(string, optional): Path to reference video (optional)
Output:
- Single stream mode: Artifact type scores
- Comparison mode: Artifact change delta values
- Risk summary and likely causes
5. summarize_transcode_comparison
Generate comprehensive transcoding effect assessment report.
Input:
source(string): Path to source videotranscoded(string): Path to transcoded video
Output:
- Quality change verdict
- VMAF delta and bitrate savings
- Key issues list
- Encoding parameter optimization recommendations
Technical Implementation
- FFmpeg/ffprobe Wrapper - Unified command-line interface
- No Deep Learning Dependencies - Uses traditional image processing and signal analysis methods
- Structured Output - All tools return standard JSON format
- Error Handling - Clear error message return mechanism
Requirements
- Python 3.10+
- FFmpeg (must be installed and configured in PATH)
- Python packages listed in
requirements.txt
Notes
- Ensure FFmpeg is properly installed with VMAF support
- Large file analysis may take a long time
- All paths should preferably use absolute paths
Documentation
For Chinese documentation, see README.zh.md.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。