VisiData MCP Server

VisiData MCP Server

Provides access to VisiData functionality for data analysis, visualization, and transformation across multiple formats. Supports advanced features like correlation heatmaps, skills analysis, salary benchmarking, and statistical distribution plots.

Category
访问服务器

README

VisiData MCP Server

A Model Context Protocol (MCP) server that provides access to VisiData functionality with enhanced data visualization and analysis capabilities.

🚀 Features

📊 Data Visualization

  • create_correlation_heatmap - Generate correlation matrices with beautiful heatmap visualizations
  • create_distribution_plots - Create statistical distribution plots (histogram, box, violin, kde)
  • create_graph - Custom graphs (scatter, line, bar, histogram) with categorical grouping support

🧠 Advanced Skills Analysis

  • parse_skills_column - Parse comma-separated skills into individual skills with one-hot encoding
  • analyze_skills_by_location - Comprehensive skills frequency and distribution analysis by location
  • create_skills_location_heatmap - Visual heatmap showing skills distribution across locations
  • analyze_salary_by_location_and_skills - Advanced salary statistics by location and skills combination

🔧 Core Data Tools

  • load_data - Load and inspect data files from various formats
  • get_data_sample - Get a preview of your data with configurable row count
  • analyze_data - Perform comprehensive data analysis with column types and statistics
  • convert_data - Convert between different data formats (CSV ↔ JSON ↔ Excel, etc.)
  • filter_data - Filter data based on conditions (equals, contains, greater/less than)
  • get_column_stats - Get detailed statistics for specific columns
  • sort_data - Sort data by any column in ascending or descending order

📦 Installation

🚀 Quick Install (Recommended)

npm install -g @moeloubani/visidata-mcp@beta

Prerequisites: Python 3.10+ (the installer will check and guide you if needed)

Alternative: Python Install

pip install visidata-mcp

Development Install

git clone https://github.com/moeloubani/visidata-mcp.git
cd visidata-mcp
pip install -e .

⚙️ Configuration

Claude Desktop

Add to ~/Library/Application Support/Claude/claude_desktop_config.json:

{
  "mcpServers": {
    "visidata": {
      "command": "visidata-mcp"
    }
  }
}

Cursor AI

Create .cursor/mcp.json in your project:

{
  "mcpServers": {
    "visidata": {
      "command": "visidata-mcp"
    }
  }
}

Restart your AI application after configuration changes.

🎯 Example Usage

Data Visualization

# Create a correlation heatmap
create_correlation_heatmap("sales_data.csv", "correlation_heatmap.png")

# Generate distribution plots for all numeric columns
create_distribution_plots("sales_data.csv", "distributions.png", plot_type="histogram")

# Create a scatter plot with categorical grouping
create_graph("sales_data.csv", "price", "sales", "scatter_plot.png", 
            graph_type="scatter", category_column="region")

Skills Analysis

# Parse comma-separated skills into individual columns
parse_skills_column("jobs.csv", "required_skills", "skills_parsed.csv")

# Analyze skills distribution by location
analyze_skills_by_location("jobs.csv", "required_skills", "location", "skills_analysis.json")

# Create skills-location heatmap
create_skills_location_heatmap("jobs.csv", "required_skills", "location", "skills_heatmap.png")

# Comprehensive salary analysis
analyze_salary_by_location_and_skills("jobs.csv", "salary", "location", "required_skills", "salary_analysis.xlsx")

Basic Data Operations

# Load and analyze data
load_data("data.csv")
get_data_sample("data.csv", 10)
analyze_data("data.csv")

# Transform data
convert_data("data.csv", "data.json")
filter_data("data.csv", "revenue", "greater_than", "1000", "high_revenue.csv")
sort_data("data.csv", "date", False, "sorted_data.csv")

📊 Supported Data Formats

  • Spreadsheets: CSV, TSV, Excel (XLSX/XLS)
  • Structured Data: JSON, JSONL, XML, YAML
  • Databases: SQLite
  • Scientific: HDF5, Parquet, Arrow
  • Archives: ZIP, TAR, GZ, BZ2, XZ
  • Web: HTML tables

🔧 Troubleshooting

Common Issues

"No module named 'matplotlib'"

  • Make sure you're using the correct MCP server path
  • For local development: /path/to/visidata-mcp/venv/bin/visidata-mcp
  • Restart your AI application after configuration changes

"0 tools available"

  • Verify the MCP server path in your configuration
  • Check that Python 3.10+ is installed
  • Restart your AI application completely

Verification

Test your installation:

# Check if server starts
visidata-mcp

# Test with Python
python -c "from visidata_mcp.server import main; print('✅ Server ready')"

🎨 Key Features

  • Complete visualization support with matplotlib, seaborn, and scipy
  • Advanced skills analysis for job market and HR data
  • Skills-location correlation analysis and visualization
  • Salary analysis by location and skills combination
  • Enhanced error handling with dependency validation
  • Publication-ready visualizations (300 DPI PNG output)

📈 Use Cases

Job Market Analysis

  • Skills demand analysis by geographic location
  • Salary benchmarking across locations and skill sets
  • Market trend visualization with correlation analysis

Data Science Workflows

  • Complete statistical analysis pipeline
  • Publication-ready visualizations
  • Advanced text processing for categorical data

Business Intelligence

  • Location-based performance analysis
  • Skills gap identification
  • Compensation analysis and benchmarking

🛠 Development

# Install for development
git clone https://github.com/moeloubani/visidata-mcp.git
cd visidata-mcp
pip install -e .

# Build package
python -m build

# Run tests
python -c "from visidata_mcp.server import main; print('✅ Ready')"

📄 License

MIT License - see LICENSE for details.

🔗 Links

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选