vizro-mcp

vizro-mcp

vizro-mcp

Category
访问服务器

Tools

get_sample_data_info

If user provides no data, use this tool to get sample data information. Use the following data for the below purposes: - iris: mostly numerical with one categorical column, good for scatter, histogram, boxplot, etc. - tips: contains mix of numerical and categorical columns, good for bar, pie, etc. - stocks: stock prices, good for line, scatter, generally things that change over time - gapminder: demographic data, good for line, scatter, generally things with maps or many categories Args: data_name: Name of the dataset to get sample data for Returns: Data info object containing information about the dataset.

validate_model_config

Validate Vizro model configuration. Run ALWAYS when you have a complete dashboard configuration. If successful, the tool will return the python code and, if it is a remote file, the py.cafe link to the chart. The PyCafe link will be automatically opened in your default browser if auto_open is True. Args: config: Either a JSON string or a dictionary representing a Vizro model configuration data_infos: List of DFMetaData objects containing information about the data files auto_open: Whether to automatically open the PyCafe link in a browser Returns: ValidationResults object with status and dashboard details

get_model_json_schema

Get the JSON schema for the specified Vizro model. Args: model_name: Name of the Vizro model to get schema for (e.g., 'Card', 'Dashboard', 'Page') Returns: JSON schema of the requested Vizro model

get_vizro_chart_or_dashboard_plan

Get instructions for creating a Vizro chart or dashboard. Call FIRST when asked to create Vizro things.

load_and_analyze_data

Load data from various file formats into a pandas DataFrame and analyze its structure. Supported formats: - CSV (.csv) - JSON (.json) - HTML (.html, .htm) - Excel (.xls, .xlsx) - OpenDocument Spreadsheet (.ods) - Parquet (.parquet) Args: path_or_url: Local file path or URL to a data file Returns: DataAnalysisResults object containing DataFrame information and metadata

validate_chart_code

Validate the chart code created by the user and optionally open the PyCafe link in a browser. Args: config: A ChartPlan object with the chart configuration data_info: Metadata for the dataset to be used in the chart auto_open: Whether to automatically open the PyCafe link in a browser Returns: ValidationResults object with status and dashboard details

README

<br><br>

<div align="center">

<picture> <source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/mckinsey/vizro/main/.github/images/Vizro_Github_Banner_Dark_Mode.png"> <source media="(prefers-color-scheme: light)" srcset="https://raw.githubusercontent.com/mckinsey/vizro/main/.github/images/Vizro_Github_Banner_Light_Mode.png"> <img alt="Vizro logo" src="https://raw.githubusercontent.com/mckinsey/vizro/main/.github/images/Vizro_Github_Banner_Light_Mode.png" width="250"> </picture>

Vizro is a low-code toolkit for building high-quality data visualization apps

Python version PyPI version License Documentation OpenSSF Best Practices

Documentation | Get Started | Vizro examples gallery

<picture> <source srcset="https://raw.githubusercontent.com/mckinsey/vizro/main/.github/images/vizro_spash_teaser.gif"> <img alt="Gif to demonstrate Vizro features" src="https://raw.githubusercontent.com/mckinsey/vizro/main/.github/images/vizro_spash_teaser_fallback.png" width="600"> </picture> <br> <br> <img src="https://raw.githubusercontent.com/mckinsey/vizro/main/.github/images/logo_watermarks.svg" width="300"> </div>

What is Vizro?

Vizro is an open-source Python-based toolkit.

Use it to build beautiful and powerful data visualization apps quickly and easily, without needing advanced engineering or visual design expertise.

Then customize and deploy your app to production at scale.

<div align="center"> <img src="https://raw.githubusercontent.com/mckinsey/vizro/main/.github/images/code_dashboard.png" width="100%"/> Use a few lines of simple low-code configuration, with in-built visual design best practices, to assemble high-quality multi-page prototypes. </div> <br>

The benefits of the Vizro toolkit include:

<div align="center"> <img src="https://raw.githubusercontent.com/mckinsey/vizro/main/.github/images/infographic.svg" width="800"/> </div> <br>

Visit our "How-to guides" for a more detailed explanation of Vizro features.

Why use Vizro?

Vizro helps you to build data visualization apps that are:

Quick and easy

Build apps in minutes. Use a few lines of simple configuration (via Pydantic models, JSON, YAML, or Python dictionaries) in place of thousands of lines of code.

Beautiful and powerful

Build high-quality multi-page apps without needing advanced engineering or visual design expertise. Use powerful features of production-grade BI tools, with in-built visual design best practices.

Flexible

Benefit from the capabilities and flexibility of open-source packages. Use the trusted dependencies of Plotly, Dash, and Pydantic.

Customizable

Almost infinite control for advanced users. Use Python, JavaScript, HTML and CSS code extensions.

Scalable

Rapidly prototype and deploy to production. Use the in-built production-grade capabilities of Plotly, Dash and Pydantic.

Visit "Why should I use Vizro?" for a more detailed explanation of Vizro use cases.

When to use Vizro?

Use Vizro when you need to combine the speed and ease of low-code Python tools, with production capabilities of JavaScript and BI tools, and the freedom of open source:

  • Have an app that looks beautiful and professional by default.
  • Enjoy the simplicity of low-code, plus the option to customize with code almost infinitely.
  • Rapidly create prototypes which are production-ready and easy to deploy at scale.

How to use Vizro?

Vizro framework

Low-code framework for building dashboards.

The Vizro framework underpins the entire Vizro toolkit. It is a Python package (called vizro).

Visit the documentation for more details.

Vizro visual vocabulary

Chart examples.

The visual vocabulary helps you to decide which chart type to use for your requirements, and offers sample code to create these charts with Plotly or embed them into a Vizro dashboard.

Visit the visual vocabulary to search for charts or get inspiration.

<a href="https://vizro-demo-visual-vocabulary.hf.space/"> <img src="https://raw.githubusercontent.com/mckinsey/vizro/main/.github/images/toolkit_visual_vocabulary.png" width="600"> </a>

Vizro examples gallery

Dashboard examples.

The dashboard examples gallery enables you to explore Vizro in action by viewing interactive example apps. You can copy the code to use as a template or starter for your next dashboard.

Visit the dashboard examples gallery to see the dashboards in action.

<a href="https://vizro.mckinsey.com/"> <img src="https://raw.githubusercontent.com/mckinsey/vizro/main/.github/images/toolkit_dashboard_examples.png" width="600"> </a>

Vizro-AI

Use LLMs to generate charts and dashboards.

Vizro-AI is a separate package (called vizro_ai) that extends Vizro to incorporate LLMs. Use it to build interactive Vizro charts and dashboards, by simply describing what you need in plain English or other languages.

Visit the Vizro-AI documentation for more details.

<picture> <source srcset="https://raw.githubusercontent.com/mckinsey/vizro/main/.github/images/toolkit_vizro_ai.gif"> <img alt="Gif to demonstrate Vizro-AI" src="https://raw.githubusercontent.com/mckinsey/vizro/main/.github/images/toolkit_vizro_ai_fallback.png" width="600"> </picture>

Installation and first steps

pip install vizro

See the installation guide for more information.

The get started documentation explains how to create your first dashboard.

Packages

This repository is a monorepo containing the following packages:

Folder Version Documentation
vizro-core PyPI version Vizro Docs
vizro-ai PyPI version Vizro-AI Docs

Community and development

We encourage you to ask and discuss any technical questions via the GitHub Issues. This is also the place where you can submit bug reports or request new features.

Want to contribute to Vizro?

The contributing guide explains how you can contribute to Vizro.

You can also view current and former contributors here.

Want to report a security vulnerability?

See our security policy.

License

vizro is distributed under the terms of the Apache License 2.0.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选